From Wikipedia, the free encyclopedia - View original article

  (Redirected from Tree root)
Jump to: navigation, search
Primary and secondary roots in a cotton plant

In vascular plants, the root is the organ of a plant that typically lies below the surface of the soil. However, roots can also be aerial or aerating (growing up above the ground or especially above water). Furthermore, a stem normally occurring below ground is not exceptional either (see rhizome).Therefore, the root is best defined as the non-leaf, non-nodes bearing parts of the plant's body. However, important internal structural differences between stems and roots exist.

The first root that comes from a plant is called the radicle. The four major functions of roots are 1) absorption of water and inorganic nutrients, 2) anchoring of the plant body to the ground, and supporting it, 3) storage of food and nutrients, 4) vegetative reproduction. In response to the concentration of nutrients, roots also synthesise cytokinin, which acts as a signal as to how fast the shoots can grow. Roots often function in storage of food and nutrients. The roots of most vascular plant species enter into symbiosis with certain fungi to form mycorrhizas, and a large range of other organisms including bacteria also closely associate with roots.

Big old tree roots that are left out of the soil.


When dissected, the arrangement of the cells in a root is root hair, epidermis, epiblem, cortex, endodermis, pericycle and lastly the vascular tissue in the centre of a root to transport the water absorbed by the root to other places of the plant.

Root growth[edit]

Roots of trees

Early root growth is one of the functions of the apical meristem located near the tip of the root. The meristem cells more or less continuously divide, producing more meristem, root cap cells (these are sacrificed to protect the meristem), and undifferentiated root cells. The latter become the primary tissues of the root, first undergoing elongation, a process that pushes the root tip forward in the growing medium. Gradually these cells differentiate and mature into specialized cells of the root tissues.

There is correlation of roots using the process of plant perception to sense their physical environment to grow, [1] including the sensory of light, [2] and physical barriers. [3] Plant roots will generally grow in any direction where the correct environment of air, mineral nutrients and water exists to meet the plant's needs. Roots will shy or shrink away from dry,[4] or other poor soil conditions.

Over time, given the right conditions, roots can crack foundations, snap water lines, and lift sidewalks. At germination, roots grow downward due to gravitropism, the growth mechanism of plants that also causes the shoot to grow upward. In some plants (such as ivy), the "root" actually clings to walls and structures.

Growth from apical meristems is known as primary growth, which encompasses all elongation. Secondary growth encompasses all growth in diameter, a major component of woody plant tissues and many nonwoody plants. For example, storage roots of sweet potato have secondary growth but are not woody. Secondary growth occurs at the lateral meristems, namely the vascular cambium and cork cambium. The former forms secondary xylem and secondary phloem, while the latter forms the periderm.

In plants with secondary growth, the vascular cambium, originating between the xylem and the phloem, forms a cylinder of tissue along the stem and root. The vascular cambium forms new cells on both the inside and outside of the cambium cylinder, with those on the inside forming secondary xylem cells, and those on the outside forming secondary phloem cells. As secondary xylem accumulates, the "girth" (lateral dimensions) of the stem and root increases. As a result, tissues beyond the secondary phloem (including the epidermis and cortex, in many cases) tend to be pushed outward and are eventually "sloughed off" (shed).

At this point, the cork cambium begins to form the periderm, consisting of protective cork cells containing suberin. In roots, the cork cambium originates in the pericycle, a component of the vascular cylinder.

The vascular cambium produces new layers of secondary xylem annually. The xylem vessels are dead at maturity but are responsible for most water transport through the vascular tissue in stems and roots.

Types of roots[edit]

A true root system consists of a primary root and secondary roots (or lateral roots).

Specialized roots[edit]

Prop roots of Maize plant
Roots forming above ground on a cutting of an Odontonema ("Firespike")
Aerating roots of a mangrove
The growing tip of a fine root
The stilt roots of Socratea exorrhiza

The roots, or parts of roots, of many plant species have become specialized to serve adaptive purposes besides the two primary functions described in the introduction.

Rooting depths[edit]

Cross section of a mango tree

The distribution of vascular plant roots within soil depends on plant form, the spatial and temporal availability of water and nutrients, and the physical properties of the soil. The deepest roots are generally found in deserts and temperate coniferous forests; the shallowest in tundra, boreal forest and temperate grasslands. The deepest observed living root, at least 60 metres below the ground surface, was observed during the excavation of an open-pit mine in Arizona, USA. Some roots can grow as deep as the tree is high. The majority of roots on most plants are however found relatively close to the surface where nutrient availability and aeration are more favourable for growth. Rooting depth may be physically restricted by rock or compacted soil close below the surface, or by anaerobic soil conditions.

Rooting depth records[edit]

SpeciesLocationMaximum rooting depth (m)References[5][6]
Boscia albitruncaKalahari desert68Jennings (1974)
Juniperus monospermaColorado Plateau61Cannon (1960)
Eucalyptus sp.Australian forest61Jennings (1971)
Acacia eriolobaKalahari desert60Jennings (1974)
Prosopis julifloraArizona desert53.3Phillips (1963)

Root architecture[edit]

In its simplest form, the term root architecture refers to the spatial configuration of a plant’s root system. This system can be extremely complex and is dependent upon multiple factors such as the species of the plant itself, the composition of the soil and the availability of nutrients[7] . Root architecture plays the important role of providing a secure supply of nutrients and water as well as anchorage and support. The main terms used to classify the architecture of a root system are:[8]

  1. Herringbone: alternate lateral branching off a parent root
  2. Dichotomous: opposite, forked branches
  3. Radial: whorl(s) of branches around a root

All of these components are regulated through a complex interaction between genetic responses and responses due to environmental stimuli. These developmental stimuli are categorised as intrinsic, the genetic and nutritional influences, or extrinsic, the environmental influences and are interpreted by signal transduction pathways[9] . The extrinsic factors that affect root architecture include gravity, light exposure, water and oxygen, as well as the availability (or lack thereof) of nitrogen, phosphorus, sulphur, aluminium and sodium chloride. The main hormones (intrinsic stimuli) and respective pathways responsible for root architecture development include:

The configuration of root systems is important to support the plant, compete with other plants and for uptake of nutrients from the soil. Roots grow to specific conditions, which, if changed, can impede a plants growth. For example, a root system that has developed in dry soil may not be as efficient in flooded soil, however, plants are still able to adapt to changes in the environment, such as seasonal changes.

Certain plants, namely Fabaceae, form root nodules in order to associate and form a symbiotic relationship with nitrogen-fixing bacteria called rhizobia. Due to the high energy required to fix nitrogen from the atmosphere, the bacteria take carbon compounds from the plant to fuel the process. In return, the plant takes nitrogen compounds produced from ammonia by the bacteria.

Tree roots usually grow to three times the diameter of the branch spread, only half of which lie underneath the trunk and canopy. The roots from one side of a tree usually supply nutrients to the foliage on the same side. Some families however, such as Sapindaceae (the maple family), show no correlation between root location and where the root supplies nutrients on the plant.

Evolutionary history[edit]

The fossil record of roots – or rather, infilled voids where roots rotted after death – spans back to the late Silurian,[10] but their identification is difficult, because casts and molds of roots are so similar in appearance to animal burrows – although they can be discriminated on the basis of a range of features.[11]

Economic importance[edit]

Roots can also protect the environment by holding the soil to prevent soil erosion

The term root crops refers to any edible underground plant structure, but many root crops are actually stems, such as potato tubers. Edible roots include cassava, sweet potato, beet, carrot, rutabaga, turnip, parsnip, radish, yam and horseradish. Spices obtained from roots include sassafras, angelica, sarsaparilla and licorice.

Sugar beet is an important source of sugar. Yam roots are a source of estrogen compounds used in birth control pills. The fish poison and insecticide rotenone is obtained from roots of Lonchocarpus spp. Important medicines from roots are ginseng, aconite, ipecac, gentian and reserpine. Several legumes that have nitrogen-fixing root nodules are used as green manure crops, which provide nitrogen fertilizer for other crops when plowed under. Specialized bald cypress roots, termed knees, are sold as souvenirs, lamp bases and carved into folk art. Native Americans used the flexible roots of white spruce[disambiguation needed] for basketry.

Tree roots can heave and destroy concrete sidewalks and crush or clog buried pipes. The aerial roots of strangler fig have damaged ancient Mayan temples in Central America and the temple of Angkor Wat in Cambodia.

Trees stabilize soil on a slope prone to landslides. The root hairs work as an anchor on the soil.

Vegetative propagation of plants via cuttings depends on adventitious root formation. Hundreds of millions of plants are propagated via cuttings annually including chrysanthemum, poinsettia, carnation, ornamental shrubs and many houseplants.

Roots can also protect the environment by holding the soil to prevent soil erosion. This is especially important in areas such as sand dunes.

Roots on onion bulbs

See also[edit]


  1. ^ Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots, doi:10.1073/pnas.0607703104  Unknown parameter |Issue= ignored (|issue= suggested) (help); Unknown parameter |Date= ignored (|date= suggested) (help); Unknown parameter |Vol= ignored (help)
  2. ^ UV-B light sensing mechanism discovered in plant roots, San Francisco State University, December 8, 2008 
  3. ^ (2012). Want bigger plants? Get to the root of the matter. Society for Experimental Biology.
  4. ^ Carminat, Andrea; et al (2009). When Roots Lose Contact 2009 (8). Vadose Zone J. pp. 805–809. doi:10.2136/vzj2008.0147. 
  5. ^ Canadell, J.; R. B. Jackson, J. B. Ehleringer, H. A. Mooney, O. E. Sala and E.-D. Schulze (December 3, 2004). "Maximum rooting depth of vegetation types at the global scale". Oecologia 108 (4): 583–595. doi:10.1007/BF00329030. 
  6. ^ Stonea, E. L.; P. J. Kaliszb (1 December 1991). "On the maximum extent of tree roots". Forest Ecology and Management 46 (1–2): 59–102. doi:10.1016/0378-1127(91)90245-Q. 
  7. ^ Malamy, J. E. (2005). "ntrinsic and environmental response pathways that regulate root system architecture.". Plant Cell Environ 28: 67–77. 
  8. ^ Fitter, A. H (1991). "The ecological significance of root system architecture: an economic approach". Plant Root Growth: An Ecological Perspectiv: 229–243. 
  9. ^ Malamy, J. E.; Ryan K. S. (2001). "Environmental regulation of lateral root initiation". Arabidopsis. Plant Physiol. 127: 899–909. 
  10. ^ Retallack, G. J. (1986). Wright, V. P., ed. Paleosols: their Recognition and Interpretation. Oxford: Blackwell. 
  11. ^ Hillier, R, Edwards, D;Other, A.N. (2008). "Sedimentological evidence for rooting structures in the Early Devonian Anglo–Welsh Basin (UK), with speculation on their producers". Palaeogeography Palaeoclimatology Palaeoecology 270 (3–4): 366. doi:10.1016/j.palaeo.2008.01.038. 


External links[edit]