Translational research

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search

Translational research is engineering research that aims to make findings from basic science useful for practical applications that enhance human health and well-being. It is practiced in fields such as environmental and agricultural science, as well as the health, behavioral, and social sciences.[citation needed] For example, in medicine and nursing it aims to "translate" findings in basic research into medical and nursing practice and meaningful health outcomes. Applying knowledge from basic science is a major stumbling block in science[citation needed], partially due to the compartmentalization within science.[1] Hence, translational research is seen as a key component to finding practical applications, especially within healthcare[citation needed]. Translational research is another term for translative research and translational science, although it fails to disambiguate itself from research that is not scientific (e.g., market research), which are considered outside its scope.[citation needed]

With its focus on multi-disciplinary collaboration, translational research has the potential to advance applied science[citation needed]. This has been attempted particularly in medicine with translational medicine, research that aims to move “from bench to bedside” or from laboratory experiments through clinical trials to point-of-care patient applications.[citation needed]

Comparison to basic research or applied research[edit]

Translational research is a paradigm for research alternative to the dichotomy of basic research and applied research. It is often applied in the domain of healthcare but has more general applicability as a distinct research approach.[citation needed] It is also allied in practice with the approaches of participative science and participatory action research.[citation needed]

The traditional categorization of research identifies just two categories: basic research (also labelled fundamental or pure research) and applied research. Basic research is more speculative and takes a long time – often decades – to be applied in any practical context.[citation needed] Basic research often leads to breakthroughs or paradigm-shifts in practice. On the other hand, applied research is research that can have an impact in practice in a relatively short time,[citation needed] but often represents an incremental improvement to current processes rather than delivering radical breakthroughs.[citation needed]

The cultural separation between different scientific fields makes it difficult to establish the multidisciplinary and multi-skilled teams that are necessary to be successful in translational research.[citation needed] Other challenges arise in the traditional incentives which reward individual principal investigators over the types of multi-disciplinary teams that are necessary for translational research.[citation needed] Also, journal publication norms often require tight control of experimental conditions, and these are difficult to achieve in real-world contexts.[2]

In medicine, translational research is increasingly a separate research field.[citation needed] A citation pattern between the applied and basic sides in cancer research appeared around 2000.[3] Since 2009, the field has also a specialized journal, the American Journal of Translational Research.

In nursing, the need for translational research was a primary driver for the development of the Doctor of Nursing Practice degree[citation needed].

Outside medicine, translational research can be applied more generally, as in science-to-business marketing or other initiatives where researchers try to shorten the time-frame and conflate the basic-applied continuum, to ‘translate’ fundamental research results into practical applications. It is necessarily a much more iterative style of research, with low and permeable barriers and much interaction between academic research and industry practice.[citation needed] Practitioners help shape the research agenda by supplying difficult problems to which applied research would only offer incremental improvements.[citation needed]

Criticisms[edit]

Critics of translational research point to examples of important drugs that arose from fortuitous discoveries in the course of basic research such as penicillin and benzodiazepines.[4]

Critics also point to the importance of basic research in improving our understanding of basic biological facts (e.g. the function and structure of DNA) that then transform applied medical research.[5]

"The first problem is that history is not really on the side of translational research. Most inventions and practical applications of science and technology which we take for granted have come not from people sitting in a room trying to invent new things but as fortuitous offshoots of curiosity-driven research."[6]

Critics have also demanded that translational research be subjected to the principles of evidence-based policy to establish that it is in fact superior (or more cost-effective) to funding basic research itself.[citation needed]

Examples of failed translational research abound in the pharmaceutical industry, such as the failure of anti-aβ therapeutics in Alzheimer's disease.[7] Other problems arise from the widespread irreproducibility thought to exist in the translational research literature.[8]

Attempts to reform translation research[edit]

To flourish, translational research requires a knowledge-driven ecosystem, in which constituents generate, contribute, manage and analyze data available from all parts of the landscape[citation needed]. The goal is a continuous feedback loop to accelerate the translation of data into knowledge[citation needed]. Collaboration, data sharing, data integration and standards are very important.[citation needed] Only by seamlessly structuring and integrating these data types will the complex and underlying causes and outcomes of illness be revealed, and effective prevention, early detection and personalized treatments be realized.[citation needed]

Translational research requires that information and data flow from hospitals, clinics and study participants in an organized and structured format, to repositories and laboratories.[citation needed] Also, the scale, scope and multi-disciplinary approach that translational research requires means a new level of operations management capabilities within and across studies, repositories and laboratories.[citation needed] Meeting the increased operational requirements of larger studies, with ever increasing specimen counts, larger and more complex systems biology data sets, and government regulations, requires informatics that enables the integration of both operational capabilities and clinical and basic data.[citation needed] Most informatics systems today are inadequate to handle the tasks of complicated operations and contextually in data management and analysis.[citation needed]

Definitions of translational research[edit]

Translational research refers to two distinct domains: T1 research, the “bench-to-bedside” enterprise of translating knowledge from the basic sciences into the development of new treatments; and T2 research, translating the findings from clinical trials into everyday practice.[9]

Websites that help to define translational research:

See also[edit]

External links[edit]

References[edit]

  1. ^ http://ccts.uth.tmc.edu/what-is-translational-research
  2. ^ Feldman, A. Does Academic Culture Support Translational Research? CTS: Clinical and Translational Science 2008;1(2):87-88
  3. ^ Cambrosio, Alberto; Keating, Peter; Mercier, Simon (December 2006), "Mapping the emergence and development of translational cancer research", European Journal of Cancer (Elsevier Ltd) 42 (28): 3140–3148, doi:10.1016/j.ejca.2006.07.020 
  4. ^ Tone, Andrea (2009). The Age of Anxiety: the History of America's Love Affairs with Tranquilizers. 
  5. ^ http://blogs.scientificamerican.com/the-curious-wavefunction/2012/11/26/the-perils-of-translational-research/
  6. ^ http://blogs.scientificamerican.com/the-curious-wavefunction/2012/11/26/the-perils-of-translational-research/
  7. ^ Koo, Edward. "Anti-aβ therapeutics in Alzheimer's disease: the need for a paradigm shift.". Cell Press. Retrieved 28 April 2014. 
  8. ^ Prinz, Florian. "Believe it or not: how much can we rely on published data on potential drug targets?". Nature Publishing Group. Retrieved 28 April 2014. 
  9. ^ Woolf SH. The Meaning of Translational Research and Why It Matters. JAMA 2008;299;211-213