From Wikipedia, the free encyclopedia  View original article
A time series is a sequence of data points, measured typically at successive points in time spaced at uniform time intervals. Examples of time series are the daily closing value of the Dow Jones Industrial Average and the annual flow volume of the Nile River at Grand Ethiopian Renaissance Dam. Time series are very frequently plotted via line charts. Time series are used in statistics, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. While regression analysis is often employed in such a way as to test theories that the current values of one or more independent time series affect the current value of another time series, this type of analysis of time series is not called "time series analysis", which focuses on comparing values of a single time series or multiple dependent time series at different points in time.^{[1]}
Time series data have a natural temporal ordering. This makes time series analysis distinct from crosssectional studies, in which there is no natural ordering of the observations (e.g. explaining people's wages by reference to their respective education levels, where the individuals' data could be entered in any order). Time series analysis is also distinct from spatial data analysis where the observations typically relate to geographical locations (e.g. accounting for house prices by the location as well as the intrinsic characteristics of the houses). A stochastic model for a time series will generally reflect the fact that observations close together in time will be more closely related than observations further apart. In addition, time series models will often make use of the natural oneway ordering of time so that values for a given period will be expressed as deriving in some way from past values, rather than from future values (see time reversibility.)
Time series analysis can be applied to realvalued, continuous data, discrete numeric data, or discrete symbolic data (i.e. sequences of characters, such as letters and words in the English language.^{[2]}).
Methods for time series analyses may be divided into two classes: frequencydomain methods and timedomain methods. The former include spectral analysis and recently wavelet analysis; the latter include autocorrelation and crosscorrelation analysis. In time domain correlation analyses can be made in a filterlike manner using scaled correlation, thereby mitigating the need to operate in frequency domain.
Additionally, time series analysis techniques may be divided into parametric and nonparametric methods. The parametric approaches assume that the underlying stationary stochastic process has a certain structure which can be described using a small number of parameters (for example, using an autoregressive or moving average model). In these approaches, the task is to estimate the parameters of the model that describes the stochastic process. By contrast, nonparametric approaches explicitly estimate the covariance or the spectrum of the process without assuming that the process has any particular structure.
Methods of time series analysis may also be divided into linear and nonlinear, and univariate and multivariate.
There are several types of motivation and data analysis available for time series which are appropriate for different purposes.
In the context of statistics, econometrics, quantitative finance, seismology, meteorology, and geophysics the primary goal of time series analysis is forecasting. In the context of signal processing, control engineering and communication engineering it is used for signal detection and estimation, while in the context of data mining, pattern recognition and machine learning time series analysis can be used for clustering, classification, query by content, anomaly detection as well as forecasting.
The clearest way to examine a regular time series manually is with a line chart such as the one shown for tuberculosis in the United States, made with a spreadsheet program. The number of cases was standardized to a rate per 100,000 and the percent change per year in this rate was calculated. The nearly steadily dropping line shows that the TB incidence was decreasing in most years, but the percent change in this rate varied by as much as +/ 10%, with 'surges' in 1975 and around the early 1990s. The use of both vertical axes allows the comparison of two time series in one graphic. Other techniques include:
See main article: Statistical classification
Models for time series data can have many forms and represent different stochastic processes. When modeling variations in the level of a process, three broad classes of practical importance are the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. These three classes depend linearly on previous data points.^{[6]} Combinations of these ideas produce autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models. The autoregressive fractionally integrated moving average (ARFIMA) model generalizes the former three. Extensions of these classes to deal with vectorvalued data are available under the heading of multivariate timeseries models and sometimes the preceding acronyms are extended by including an initial "V" for "vector", as in VAR for vector autoregression. An additional set of extensions of these models is available for use where the observed timeseries is driven by some "forcing" timeseries (which may not have a causal effect on the observed series): the distinction from the multivariate case is that the forcing series may be deterministic or under the experimenter's control. For these models, the acronyms are extended with a final "X" for "exogenous".
Nonlinear dependence of the level of a series on previous data points is of interest, partly because of the possibility of producing a chaotic time series. However, more importantly, empirical investigations can indicate the advantage of using predictions derived from nonlinear models, over those from linear models, as for example in nonlinear autoregressive exogenous models.
Among other types of nonlinear time series models, there are models to represent the changes of variance over time (heteroskedasticity). These models represent autoregressive conditional heteroskedasticity (ARCH) and the collection comprises a wide variety of representation (GARCH, TARCH, EGARCH, FIGARCH, CGARCH, etc.). Here changes in variability are related to, or predicted by, recent past values of the observed series. This is in contrast to other possible representations of locally varying variability, where the variability might be modelled as being driven by a separate timevarying process, as in a doubly stochastic model.
In recent work on modelfree analyses, wavelet transform based methods (for example locally stationary wavelets and wavelet decomposed neural networks) have gained favor. Multiscale (often referred to as multiresolution) techniques decompose a given time series, attempting to illustrate time dependence at multiple scales. See also Markov switching multifractal (MSMF) techniques for modeling volatility evolution.
A Hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be considered as the simplest dynamic Bayesian network. HMM models are widely used in speech recognition, for translating a time series of spoken words into text.
A number of different notations are in use for timeseries analysis. A common notation specifying a time series X that is indexed by the natural numbers is written
Another common notation is
where T is the index set.
There are two sets of conditions under which much of the theory is built:
However, ideas of stationarity must be expanded to consider two important ideas: strict stationarity and secondorder stationarity. Both models and applications can be developed under each of these conditions, although the models in the latter case might be considered as only partly specified.
In addition, timeseries analysis can be applied where the series are seasonally stationary or nonstationary. Situations where the amplitudes of frequency components change with time can be dealt with in timefrequency analysis which makes use of a time–frequency representation of a timeseries or signal.^{[7]}
The general representation of an autoregressive model, well known as AR(p), is
where the term ε_{t} is the source of randomness and is called white noise. It is assumed to have the following characteristics:
With these assumptions, the process is specified up to secondorder moments and, subject to conditions on the coefficients, may be secondorder stationary.
If the noise also has a normal distribution, it is called normal or Gaussian white noise. In this case, the AR process may be strictly stationary, again subject to conditions on the coefficients.
This section is in a list format that may be better presented using prose. (February 2012) 
Tools for investigating timeseries data include:
Time series metrics or features that can be used for time series classification or regression analysis:^{[9]}
Time series can be visualized with two categories of chart:Overlapping Charts and Separated Charts. Overlapping Charts display all time series on the same layout while Separated Charts presents them on different layouts (but aligned for comparison purpose)^{[12]}
