Solder

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
A soldered joint used to attach a wire to the pin of a component on the rear of a printed circuit board.

Solder (/ˈsldə/,[1] /ˈsɒldə/[1] or in USA /ˈsɒdər/[2]) is a fusible metal alloy used to join together metal workpieces and having a melting point below that of the workpiece(s).

Soft solder is typically thought of when solder or soldering is mentioned, with a typical melting range of 90 to 450 °C (190 to 840 °F).[3] It is commonly used in electronics, plumbing, and assembly of sheet metal parts. Manual soldering uses a soldering iron or soldering gun. Alloys that melt between 180 and 190 °C (360 and 370 °F) are the most commonly used. Soldering performed using alloys with a melting point above 450 °C (840 °F) is called 'hard soldering', 'silver soldering', or brazing.

For certain proportions an alloy becomes eutectic and melts at a single temperature; non-eutectic alloys have markedly different solidus and liquidus temperatures, and within that range they exist as a paste of solid particles in a melt of the lower-melting phase. In electrical work, if the joint is disturbed in the pasty state before it has solidified totally, a poor electrical connection may result; use of eutectic solder reduces this problem. The pasty state of a non-eutectic solder can be exploited in plumbing as it allows molding of the solder during cooling, e.g. for ensuring watertight joint of pipes, resulting in a so-called 'wiped joint'.

For electrical and electronics work solder wire is available in a range of thicknesses for hand-soldering, and with cores containing flux. It is also available as a paste or as a preformed foil shaped to match the workpiece, more suitable for mechanized mass-production. Alloys of lead and tin were universally used in the past, and are still available; they are particularly convenient for hand-soldering. Lead-free solder, somewhat less convenient for hand-soldering, is often used to avoid the environmental effect of lead.

Plumbers often use bars of solder, much thicker than the wire used for electrical applications. Jewelers often use solder in thin sheets which they cut into snippets.

The word solder comes from the Middle English word soudur, via Old French solduree and soulder, from the Latin solidare, meaning "to make solid".[4]

With the reduction of the size of circuit board features, the size of interconnects shrinks as well. Current densities above 104 A/cm2 are often achieved and electromigration becomes a concern. At such current densities the Sn63Pb37 solder balls form hillocks on the anode side and voids on the cathode side; the increased content of lead on the anode side suggests lead is the primary migrating species.[5]

Contact with molten solder can cause 'solder embrittlement' of materials, a type of liquid metal embrittlement.[citation needed]

Lead solder[edit]

Sn60Pb40 solder

Tin/lead solders, also called soft solders, are commercially available with tin concentrations between 5% and 70% by weight. The greater the tin concentration, the greater the solder’s tensile and shear strengths. Alloys commonly used for electrical soldering are 60/40 Tin/lead (Sn/Pb) which melts at 370 °F or 188 °C and 63/37 Sn/Pb used principally in electrical/electronic work. The 63/37 is a eutectic alloy, which:

  1. has the lowest melting point (183 °C or 361.4 °F) of all the tin/lead alloys; and
  2. the melting point is truly a point — not a range.

In plumbing, a higher proportion of lead was used, commonly 50/50. This had the advantage of making the alloy solidify more slowly, so that it could be wiped over the joint to ensure watertightness, the pipes being physically fitted together before soldering. Although lead water pipes were displaced by copper when the significance of lead poisoning began to be fully appreciated, lead solder was still used until the 1980s because it was thought that the amount of lead that could leach into water from the solder was negligible from a properly soldered joint. The electrochemical couple of copper and lead promotes corrosion of the lead and tin, however tin is protected by insoluble oxide. Since even small amounts of lead have been found detrimental to health,[6] lead in plumbing solder was replaced by silver (food grade applications) or antimony, with copper often added, and the proportion of tin was increased (see Lead-free solder.)

The addition of tin—more expensive than lead—improves wetting properties of the alloy; lead itself has poor wetting characteristics. High-tin tin-lead alloys have limited use as the workability range can be provided by a cheaper high-lead alloy.[7]

In electronics, components on printed circuit boards (PCBs) are connected to the printed circuit, and hence to other components, by soldered joints. For miniaturized PCB joints with surface mount components, solder paste has largely replaced solid solder.

Lead-tin solders readily dissolve gold plating and form brittle intermetallics.[8]

Sn60Pb40 solder oxidizes on the surface, forming a complex 4-layer structure: tin(IV) oxide on the surface, below it a layer of tin(II) oxide with finely dispersed lead, followed by a layer of tin(II) oxide with finely dispersed tin and lead, and the solder alloy itself underneath.[9]

Lead, and to some degree tin, as used in solder contains small but significant amounts of radioisotope impurities. Radioisotopes undergoing alpha decay are a concern due to their tendency to cause soft errors. Polonium-210 is especially problematic; lead-210 beta decays to bismuth-210 which then beta decays to polonium-210, an intense emitter of alpha particles. Uranium-238 and thorium-232 are other significant contaminants of alloys of lead.[5][10]

Lead-free solder[edit]

Pure tin solder wire
Soldering copper pipes using a propane torch and lead-free solder

On July 1, 2006 the European Union Waste Electrical and Electronic Equipment Directive (WEEE) and Restriction of Hazardous Substances Directive (RoHS) came into effect prohibiting the inclusion of significant quantities of lead in most consumer electronics produced in the EU. Manufacturers in the U.S. may receive tax benefits by reducing the use of lead-based solder. Lead-free solders in commercial use may contain tin, copper, silver, bismuth, indium, zinc, antimony, and traces of other metals. Most lead-free replacements for conventional Sn60/Pb40 and Sn63/Pb37 solder have melting points from 5 to 20 °C higher,[11] though solders with much lower melting points are available.

Drop-in replacements for silkscreen with solder paste soldering operations are available. Minor modification to the solder pots (e.g. titanium liners or impellers) used in wave-soldering operations may be desired to reduce maintenance costs associated with the increased tin-scavenging effects of high tin solders. Since the properties of lead-free solders are not as thoroughly known, they may therefore be considered less desirable for critical applications, like certain aerospace or medical projects. "Tin whiskers" were a problem with early electronic solders, and lead was initially added to the alloy in part to eliminate them.

Sn-Ag-Cu (Tin-Silver-Copper) solders are used by two thirds of Japanese manufacturers for reflow and wave soldering, and by about 75% of companies for hand soldering. The widespread use of this popular lead-free solder alloy family is based on the reduced melting point of the Sn-Ag-Cu ternary eutectic behavior (217 ˚C), which is below the Sn-3.5Ag (wt.%) eutectic of 221 °C and the Sn-0.7Cu eutectic of 227 °C (recently revised by P. Snugovsky to Sn-0.9Cu). The ternary eutectic behavior of Sn-Ag-Cu and its application for electronics assembly was discovered (and patented) by a team of researchers from Ames Laboratory, Iowa State University, and from Sandia National Laboratories-Albuquerque.

Much recent research has focused on selection of 4th element additions to Sn-Ag-Cu to provide compatibility for the reduced cooling rate of solder sphere reflow for assembly of ball grid arrays, e.g., Sn-3.5Ag-0.74Cu-0.21Zn (melting range of 217–220 ˚C) and Sn-3.5Ag-0.85Cu-0.10Mn (melting range of 211–215 ˚C).

Tin-based solders readily dissolve gold, forming brittle intermetallics; for Sn-Pb alloys the critical concentration of gold to embrittle the joint is about 4%. Indium-rich solders (usually indium-lead) are more suitable for soldering thicker gold layer as the dissolution rate of gold in indium is much slower. Tin-rich solders also readily dissolve silver; for soldering silver metallization or surfaces, alloys with addition of silvers are suitable; tin-free alloys are also a choice, though their wettability is poorer. If the soldering time is long enough to form the intermetallics, the tin surface of a joint soldered to gold is very dull.[8]

Flux-core solder [edit]

Electrical solder with an integrated rosin core, visible as a dark spot in the cut end of the solder wire.

Flux is a reducing agent designed to help reduce (return oxidized metals to their metallic state) metal oxides at the points of contact to improve the electrical connection and mechanical strength. The two principal types of flux are acid flux, used for metal mending and plumbing, and rosin flux, used in electronics, where the corrosiveness of acid flux and vapors released when solder is heated would risk damaging delicate circuitry.

Due to concerns over atmospheric pollution and hazardous waste disposal, the electronics industry has been gradually shifting from rosin flux to water-soluble flux, which can be removed with deionized water and detergent, instead of hydrocarbon solvents.

In contrast to using traditional bars or coiled wires of all-metal solder and manually applying flux to the parts being joined, much hand soldering since the mid-20th century has used flux-core solder. This is manufactured as a coiled wire of solder, with one or more continuous bodies of non-acid flux embedded lengthwise inside it. As the solder melts onto the joint, it frees the flux and releases that on it as well.

Hard solder[edit]

Hard solders are used for brazing, and melt at higher temperatures. Alloys of copper with either zinc or silver are the most common.

In silversmithing or jewelry making, special hard solders are used that will pass assay. They contain a high proportion of the metal being soldered and lead is not used in these alloys. These solders vary in hardness, designated as "enameling", "hard", "medium" and "easy". Enameling solder has a high melting point, close to that of the material itself, to prevent the joint desoldering during firing in the enameling process. The remaining solder types are used in decreasing order of hardness during the process of making an item, to prevent a previously soldered seam or joint desoldering while additional sites are soldered. Easy solder is also often used for repair work for the same reason. Flux or rouge is also used to prevent joints from desoldering.

Silver solder is also used in manufacturing to join metal parts that cannot be welded. The alloys used for these purposes contain a high proportion of silver (up to 40%), and may also contain cadmium.

Solder alloys[edit]

CompositionM.P. °C
S/L
ToxicEutecticCommentsSnPbAgCuSbBiInZnCdAuoth. !
Sn50Zn49Cu1200/300[12]noGalvanite Lead free galvanizing solder formulation designed specifically for high quality repairs to galvanized Steel surfaces. Simple, effective and easy to use, in both manufacturing and field applications. Metallurgically bonds to the Steel, for a seamless protective barrier.[12]50149
Sn90Zn7Cu3200/222[13]noKapp Eco-Babbitt[13] Commonly used in capacitor manufacturing as protective coating to shield against electromotive force (EMF) and electromagnetic interference (EMI) with the specified performance of the capacitor, to prevent current and charge leakage out of and within the layers of the capacitor, and to prevent the development of electron flows within the coating material itself, that would dimminish capacitor performance, coating, and capacitor life.[13]9037
Pb90Sn10268/302[14] 275/302[15]PbnoSn10, UNS L54520, ASTM10B. Balls for CBGA components, replaced by Sn95.5Ag3.9Cu0.6.[11] Low cost and good bonding properties. Rapidly dissolves gold and silver, not recommended for those.[16] Used for fabrication of car radiators and fuel tanks, for coating and bonding of metals for moderate service temperatures. Body solder.[17] Has low thermal EMF, can be used as an alternative to Cd70 where parasitic thermocouple voltage has to be avoided.[18]1090
Pb88Sn12254/296[17]PbnoUsed for fabrication of car radiators and fuel tanks, for coating and bonding of metals for moderate service temperatures. Body solder.1288
Pb85Sn15227/288[17]PbnoUsed for coating tubes and sheets and fabrication of car radiators. Body solder.1585
Pb80Sn20183/280[15]PbnoSn20, UNS L54711. Used for coating radiator tubes for joining fins.[17]2080
Pb75Sn25183/266[14]PbnoCrude solder for construction plumbing works, flame-melted. Used for soldering car engine radiators. Used for machine, dip and hand soldering of plumbing fixtures and fittings. Superior body solder.[17]2575
Pb70Sn30185/255[14] 183/257[15]PbnoSn30, UNS L54280, crude solder for construction plumbing works, flame-melted, good for machine and torch soldering.[19] Used for soldering car engine radiators. Used for machine, dip and hand soldering of plumbing fixtures and fittings. Superior body solder.[17]3070
Pb68Sn32253Pbno"Plumber solder", for construction plumbing works[20]3268
Pb68Sn30Sb2185/243[15]PbnoPb6830682
Sn30Pb50Zn20177/288[21]PbnoKapp GalvRepair Economical solder for repairing & joining most metals including Aluminum and cast Iron. Have been the used for cast Iron and galvanized surface repair.[21]305020
Sn33Pb40Zn28230/275[21]PbnoEconomical solder for repairing & joining most metals including Aluminum and cast Iron. Have been the used for cast Iron and galvanized surface repair.[21]334028
Pb67Sn33187–230PbnoPM 33, crude solder for construction plumbing works, flame-melted, temperature depends on additives3367
Pb65Sn35183/250[15]PbnoSn35. Used as a cheaper alternative of Sn60Pb40 for wiping and sweating joints.[17]3565
Pb60Sn40183/238[14] 183/247[15]PbnoSn40, UNS L54915. For soldering of brass and car radiators.[19] For bulk soldering, and where wider melting point range is desired. For joining cables. For wiping and joining lead pipes. For repairs of radiators and electrical systems.[17]4060
Pb55Sn45183/227[17]PbnoFor soldering radiator cores, roof seams, and for decorative joints.4555
Sn50Pb50183/216[14] 183–212[15]PbnoSn50, UNS L55030. "Ordinary solder", for soldering of brass, electricity meters, gas meters, formerly also tin cans. General purpose, for standard tinning and sheetmetal work. Becomes brittle below −150 °C.[8][20] Low cost and good bonding properties. Rapidly dissolves gold and silver, not recommended for those.[16] For wiping and assembling plumbing joints for non-potable water.[17]5050
Sn50Pb48.5Cu1.5183/215[22]PbnoSavbit, Savbit 1, Sav1. Minimizes dissolution of copper. Originally designed to reduce erosion of the soldering iron tips. About 100 times slower erosion of copper than ordinary tin/lead alloys. Suitable for soldering thin copper platings and very thin copper wires.[23]5048.51.5
Sn60Pb40183/190[14] 183/188[15]PbnearSn60, ASTM60A, ASTM60B. Common in electronics, most popular leaded alloy for dipping. Low cost and good bonding properties. Used in both SMT and through-hole electronics. Rapidly dissolves gold and silver, not recommended for those.[16] Slightly cheaper than Sn63Pb37, often used instead for cost reasons as the melting point difference is insignificant in practice. On slow cooling gives slightly duller joints than Sn63Pb37.[23]6040
Sn60Pb38Cu2183/190[15][24]PbCu2. Copper content increases hardness of the alloy and inhibits dissolution of soldering iron tips and part leads in molten solder.60382
Sn60Pb39Cu1Pbno60391
Sn62Pb38183Pbnear"Tinman's solder", used for tinplate fabrication work.[20]6238
Sn63Pb37182 183[25]PbyesSn63, ASTM63A, ASTM63B. Common in electronics; exceptional tinning and wetting properties, also good for stainless steel. One of most common solders. Low cost and good bonding properties. Used in both SMT and through-hole electronics. Rapidly dissolves gold and silver, not recommended for those.[16] Sn60Pb40 is slightly cheaper and is often used instead for cost reasons, as the melting point difference is insignificant in practice. On slow cooling gives slightly brighter joints than Sn60Pb40.[23]6337
Sn63Pb37P0.0015–0.04183[26]PbyesSn63PbP. A special alloy for HASL machines. Addition of phosphorus reduces oxidation. Unsuitable for wave soldering as it may form metal foam.6337P
Sn62Pb37Cu1183[24]PbyesSimilar to Sn63Pb37. Copper content increases hardness of the alloy and inhibits dissolution of soldering iron tips and part leads in molten solder.62371
Sn70Pb30183/193[14]PbnoSn707030
Sn90Pb10183/213[15]Pbnoformerly used for joints in food industry9010
Sn95Pb5238Pbnoplumbing and heating955
Pb92Sn5.5Ag2.5286/301[24]PbnoFor higher-temperature applications.5.5922.5
Pb80Sn12Sb8PbnoUsed for soldering iron and steel[20]12808
Pb80Sn18Ag2252/260[15]PbnoUsed for soldering iron and steel[20]18802
Pb79Sn20Sb1184/270PbnoSb120791
Pb55Sn43.5Sb1.5PbnoGeneral purpose solder. Antimony content improves mechanical properties but causes brittleness when soldering cadmium, zinc, or galvanized metals.[20]43.5551.5
Sn43Pb43Bi14144/163[14]PbnoBi14. Good fatigue resistance combined with low melting point. Contains phases of tin and lead-bismuth.[27] Useful for step soldering.434314
Sn46Pb46Bi8120/167[15]PbnoBi846468
Bi52Pb32Sn1696Pbyes?Bi52. Good fatigue resistance combined with low melting point. Reasonable shear strength and fatigue properties. Combination with lead-tin solder may dramatically lower melting point and lead to joint failure.[27]163252
Bi46Sn34Pb20100/105[15]PbnoBi46342046
Sn62Pb36Ag2179[14]PbyesSn62. Common in electronics. The strongest tin-lead solder. Appearance identical to Sn60Pb40 or Sn63Pb37. Crystals of Ag3Sn may be seen growing from the solder. Extended heat treatment leads to formation of crystals of binary alloys. Silver content decreases solubility of silver, making the alloy suitable for soldering silver-metallized surfaces, e.g. SMD capacitors and other silver-metallized ceramics.[8][23][27] Not recommended for gold.[16] General-purpose.62362
Sn62.5Pb36Ag2.5179[14]Pbyes62.5362.5
Pb88Sn10Ag2268/290[14] 267/299[28]PbnoSn10, Pb88. Silver content reduces solubility of silver coatings in the solder. Not recommended for gold.[16] Forms a eutectic phase, not recommended for operation above 120 °C.10882
Pb90Sn5Ag5292[14]Pbyes5905
Pb92.5Sn5Ag2.5287/296[14] 299/304[15]PbnoPb93.592.52.5
Pb93.5Sn5Ag1.5296/301[14] 305/306[15]PbnoPb94, HMP alloy, HMP. Service temperatures up to 255 °C. Useful for step soldering. Also can be used for extremely low temperatures as it remains ductile down to −200 °C, while solders with more than 20% tin become brittle below −70 °C. Higher strength and better wetting than Pb95Sn5.[23]593.51.5
Pb95.5Sn2Ag2.5299/304[14]Pbno295.52.5
In97Ag3143[29]yesWettability and low-temperature malleability of indium, strength improved by addition of silver. Particularly good for cryogenic applications. Used for packaging of photonic devices.397
In90Ag10143/237[30]noNearly as wettable and low-temperature malleable as indium. Large plastic range. Can solder silver, fired glass and ceramics.1090
In75Pb25156/165[16]PbnoLess gold dissolution and more ductile than lead-tin alloys. Used for die attachment, general circuit assembly and packaging closures.[16]2575
In70Pb30160/174[14] 165/175[15][31]PbnoIn70. Suitable for gold, low gold-leaching. Good thermal fatigue properties.3070
In60Pb40174/185[14] 173/181[15]PbnoIn60. Low gold-leaching. Good thermal fatigue properties.4060
In50Pb50180/209[16] 178/210[15]PbnoIn50. Only one phase. Resoldering with lead-tin solder forms indium-tin and indium-lead phases and leads to formation of cracks between the phases, joint weakening and failure.[27] On gold surfaces gold-indium intermetallics tend to be formed, and the joint then fails in the gold-depleted zone and the gold-rich intermetallic.[32] Less gold dissolution and more ductile than lead-tin alloys.[16] Good thermal fatigue properties.5050
In50Sn50118/125[33]noCerroseal 35. Fairly well wets glass, quartz and many ceramics. Malleable, can compensate some thermal expansion differences. Low vapor pressure. Used in low temperature physics as a glass-wetting solder.[34]5050
In70Sn15Pb9.6Cd5.4125[35]Pb,Cd159.6705.4
Pb75In25250/264[16] 240/260[36]PbnoIn25. Low gold-leaching. Good thermal fatigue properties. Used for die attachment of e.g. GaAs dies.[32] Used also for general circuit assembly and packaging closures. Less dissolution of gold and more ductile than tin-lead alloy.[16]7525
Sn70Pb18In12162[14]
154/167[37]
PbyesGeneral purpose. Good physical properties.701812
Sn37.5Pb37.5In25134/181[16]PbnoGood wettability. Not recommended for gold.[16]37.537.525
Pb90In5Ag5290/310[14]Pbno9055
Pb92.5In5Ag2.5300/310[14]PbnoUNS L51510. Minimal leaching of gold, good thermal fatigue properties. Reducing atmosphere frequently used..92.52.55
Pb92.5In5Au2.5300/310[15]PbnoIn592.552.5
Pb94.5Ag5.5305/364[15] 304/343[38]PbnoAg5.5, UNS L5018094.55.5
Pb95Ag5305/364[39]Pbno955
Pb97.5Ag2.5303[14] 304[15] 304/579[40]Pbyes noAg2.5, UNS L50132. Used during World War II to conserve tin. Poor corrosion resistance; joints suffered corrosion in both atmospheric and underground conditions, all had to be replaced with Sn-Pb alloy joints.[41] Torch solder.97.52.5
Sn97.5Pb1Ag1.5305PbyesImportant for hybrid circuits assembly.[8]97.511.5
Pb97.5Ag1.5Sn1309[14]PbyesAg1.5, ASTM1.5S. High melting point, used for commutators, armatures, and initial solder joints where remelting when working on nearby joints is undesirable.[19] Silver content reduces solubility of silver coatings in molten solder. Not recommended for gold.[16] Standard PbAgSn eutectic solder, wide use in semiconductor assembly. Reducing protective atmosphere (e.g. 12% hydrogen) often used. High creep resistance, for use at both elevated and cryogenic temperatures.197.51.5
Pb54Sn45Ag1177–210Pbexceptional strength, silver gives it a bright long-lasting finish; ideal for stainless steel[19]45541
Pb96Ag4305Pbhigh-temperature joints[19]964
Pb96Sn2Ag2252/295[15]PbPb962962
Sn61Pb36Ag3Pb[8]61363
Sn56Pb39Ag5Pb[8]56395
Sn98Ag2[8]982
Sn65Ag25Sb10233yesVery high tensile strength. For die attachment. Very brittle. Old Motorola die attach solder.652510
Sn96.5Ag3.0Cu0.5217/220 217/218[15][42]nearSAC305. It is the JEITA recommended alloy for wave and reflow soldering, with alternatives SnCu for wave and SnAg and SnZnBi for reflow soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn97Ag3 alloy. Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals.96.530.5
Sn95.8Ag3.5Cu0.7217–218nearSN96C-Ag3.5 A commonly used alloy. Used for wave soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.5Ag3.5 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals.95.83.50.7
Sn95.6Ag3.5Cu0.9217yesDetermined by NIST to be truly eutectic.95.63.50.9
Sn95.5Ag3.8Cu0.7217[43]almostSN96C. Preferred by the European IDEALS consortium for reflow soldering. Usable also for selective soldering and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.2Ag3.8 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals.95.53.80.7
Sn95.25Ag3.8Cu0.7Sb0.25Preferred by the European IDEALS consortium for wave soldering.95.253.80.70.25
Sn95.5Ag3.9Cu0.6217[44]yesRecommended by the US NEMI consortium for reflow soldering. Used as balls for BGA/CSP and CBGA components, a replacement for Sn10Pb90. Solder paste for rework of BGA boards.[11] Alloy of choice for general SMT assembly.95.53.90.6
Sn95.5Ag4Cu0.5217[45]yesLead Free, Cadmium Free formulation designed specifically to replace Lead solders in Copper and Stainless Steel plumbing, and in electrical and electronic applications.[46]95.540.5
Sn96.5Ag3.5221[14]yesSn96, Sn96.5, 96S. Fine lamellar structure of densely distributed Ag3Sn. Annealing at 125 °C coarsens the structure and softens the solder.[11] Creeps via dislocation climb as a result of lattice diffusion.[10] Used as wire for hand soldering rework; compatible with SnCu0.7, SnAg3Cu0.5, SnAg3.9Cu0.6, and similar alloys. Used as solder spheres for BGA/CSP components. Used for step soldering and die attachment in high power devices. Established history in the industry.[11] Widely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold.[16] Marginal wetting. Good for step soldering. Used for soldering stainless steel as it wets stainless steel better than other soft solders. Silver content does not suppress dissolution of silver metallizations.[23] High tin content allows absorbing significant amount of gold without embrittlement.[47]96.53.5
Sn96Ag4221–229noASTM96TS. "Silver-bearing solder". Food service equipment, refrigeration, heating, air conditioning, plumbing.[19] Widely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold.[16]964
Sn95Ag5221/254[48]noWidely used. Strong lead-free joints. Silver content minimizes solubility of silver coatings. Not recommended for gold. Produces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 30,000 psi on Stainless.[48]955
Sn94Ag6221/279[48]noProduces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 30,000 psi on Stainless.[48]946
Sn93Ag7221/302[48]noProduces strong and ductile joints on Copper and Stainless Steel. The resulting joints have high tolerance to vibration and stress, with tensile strengths to 31,000 psi on Stainless.[48] Audio industry standard for vehicle and home theater speaker installations. Its 7% Silver content requires a higher temperature range, but yields superior strength and vibration resistance.[49]937
Sn95Ag4Cu19541
Sn232pureSn99. Good strength, non-dulling. Use in food processing equipment, wire tinning, and alloying.[19] Susceptible to tin pest.99.99
Sn99.3Cu0.7227yesSn99Cu1. Also designated as Sn99Cu1. Cheap alternative for wave soldering, recommended by the US NEMI consortium. Coarse microstructure with ductile fractures. Sparsely distributed Cu6Sn5.[50] Forms large dendritic ß-tin crystals in a network of eutectic microstructure with finely dispersed Cu6Sn5. High melting point unfavorable for SMT use. Low strength, high ductility. Susceptible to tin pest.[10] Addition of small amount of nickel increases its fluidity; the highest increase occurs at 0.06% Ni. Such alloys are known as nickel modified or nickel stabilized.[51]99.30.7(Ni)
Sn99Cu0.7Ag0.3217/228[52]noSCA, SAC, or SnAgCu. Tin-silver-copper alloy. Relatively low-cost lead-free alloy for simple applications. Can be used for wave, selective and dip soldering. At high temperatures tends to dissolve copper; copper buildup in the bath has detrimental effect (e.g. increased bridging). Copper content must be maintained between 0.4–0.85%, e.g. by refilling the bath with Sn96.2Ag3.8 alloy (designated e.g. SN96Ce). Nitrogen atmosphere can be used to reduce losses by dross formation. Dull, surface shows formation of dendritic tin crystals.990.30.7
Sn97Cu3227/250[53] 232/332[17]For high-temperature uses. Allows removing insulation from an enameled wire and applying solder coating in a single operation. For radiator repairs, stained glass windows, and potable water plumbing.973
Sn97Cu2.75Ag0.25228/314[17]High hardness, creep-resistant. For radiators, stained glass windows, and potable water plumbing. Excellent high-strength solder for radiator repairs. Wide range of patina and colors.970.252.75
Zn100419pureFor soldering aluminium. Good wettability of aluminium, relatively good corrosion resistance.[54]100
Bi100271pureUsed as a non-superconducting solder in low-temperature physics. Does not wet metals well, forms a mechanically weak joint.[34]100
Sn91Zn9199[55]yesKappAloy9 Designed specifically for Aluminum-to-Aluminum and Aluminum-to-Copper soldering. It has good corrosion resistance and tensile strength. Lies between soft solder and silver brazing alloys, thereby avoiding damage to critical electronics and substrate deformation and segregation. Best solder for Aluminum wire to Copper busses or Copper wire to Aluminum busses or contacts.[55] UNS#: L91090919
Sn85Zn15199/260[55]noKappAloy15 Designed specifically for Aluminum-to-Aluminum and Aluminum-to-Copper soldering. It has good corrosion resistance and tensile strength. Lies between soft solder and silver brazing alloys, thereby avoiding damage to critical electronics and substrate deformation and segregation. Has a wide plastic range this makes it ideal for hand soldering Aluminum plates and parts, allowing manipulation of the parts as the solder cools.[55]8515
Zn95Al5382yesFor soldering aluminium. Good wetting.[54]95Al5
Sn91.8Bi4.8Ag3.4211/213[56]noDo not use on lead-containing metallizations. U.S. Patent 5,439,639 (ICA Licensed Sandia Patent).91.83.44.8
Sn70Zn30199/316[55]noKappAloy30 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[55]7030
Sn80Zn20199/288[55]noKappAloy20 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[55]8020
Sn60Zn40199/343[55]noKappAloy40 For soldering of aluminium. Good wetting. Used extensively in spray wire form for capacitors and other electronic parts. Higher temperature and higher tensile strength compared to 85Sn/15Zn and 91Sn/9Zn.[55]6040
Pb63Sn35Sb2185/243[15]PbnoSb235632
Pb63Sn34Zn3170/256PbnoPoor wetting of aluminium. Poor corrosion rating.[41]34633
Pb92Cd8310?Pb,Cd ?For soldering aluminium. US patent 1,333,666.[57]928
Sn48Bi32Pb20140/160[24]PbnoFor low-temperature soldering of heat-sensitive parts, and for soldering in the vicinity of already soldered joints without their remelting.482032
Sn89Zn8Bi3191–198Prone to corrosion and oxidation due to its zinc content. On copper surfaces forms a brittle Cu-Zn intermetallic layer, reducing the fatigue resistance of the joint; nickel plating of copper inhibits this.[58]8938
Sn83.6Zn7.6In8.8181/187[59]noHigh dross due to zinc. Covered by U.S. Patent #5,242,658.83.68.87.6
Sn86.5Zn5.5In4.5Bi3.5174/186[60]noLead-free. Corrosion concerns and high drossing due to zinc content.86.53.54.55.5
Sn86.9In10Ag3.1204/205[61]Potential use in flip-chip assembly, no issues with tin-indium eutectic phase.86.93.110
Sn95Ag3.5Zn1Cu0.5221L[58]no953.50.51
Sn95Sb5235/240[14] 232/240[15]noSb5, ASTM95TA. The US plumbing industry standard. It displays good resistance to thermal fatigue and good shear strength. Forms coarse dendrites of tin-rich solid solution with SbSn intermetallic dispersed between. Very high room-temperature ductility. Creeps via viscous glide of dislocations by pipe diffusion. More creep-resistant than SnAg3.5. Antimony can be toxic. Used for sealing chip packagings, attaching I/O pins to ceramic substrates, and die attachment; a possible lower-temperature replacement of AuSn.[10] High strength and bright finish. Use in air conditioning, refrigeration, some food containers, and high-temperature applications.[19] Good wettability, good long-term shear strength at 100 °C. Suitable for potable water systems. Used for stained glass, plumbing, and radiator repairs.955
Sn97Sb3232/238[62]no973
Sn99Sb1232/235[63]no991
Sn99Ag0.3Cu0.7990.30.7
Sn96.2Ag2.5Cu0.8Sb0.5217–225 217[15]Ag03A. Patented by AIM alliance.96.22.50.80.5
Sn88In8.0Ag3.5Bi0.5197–208Patented by Matsushita/Panasonic.883.50.58
Bi57Sn42Ag1137/139 139/140[64]Addition of silver improves mechanical strength. Established history of use. Good thermal fatigue performance. Patented by Motorola.42157
Bi58Sn42138[14][16]yesBi58. Reasonable shear strength and fatigue properties. Combination with lead-tin solder may dramatically lower melting point and lead to joint failure.[27] Low-temperature eutectic solder with high strength.[16] Particularly strong, very brittle.[14] Used extensively in through-hole technology assemblies in IBM mainframe computers where low soldering temperature was required. Can be used as a coating of copper particles to facilitate their bonding under pressure/heat and creating a conductive metallurgical joint.[58] Sensitive to shear rate. Good for electronics. Used in thermoelectric applications. Good thermal fatigue performance.[65] Established history of use. Expands slightly on casting, then undergoes very low further shrinkage or expansion, unlike many other low-temperature alloys which continue changing dimensions for some hours after solidification.[34]4258
Bi58Pb42124/126[66]Pb4258
In80Pb15Ag5142/149[15]
149/154[67]
PbnoIn80. Compatible with gold, minimum gold-leaching. Resistant to thermal fatigue. Can be used in step soldering.15580
Pb60In40195/225[15]PbnoIn40. Low gold-leaching. Good thermal fatigue properties.6040
Pb70In30245/260[15]PbnoIn307030
Sn37.5Pb37.5In26134/181[15]PbnoIn2637.537.526
Sn54Pb26In20130/154[15] 140/152[68]PbnoIn20542620
Pb81In19270/280[15] 260/275[69]PbnoIn19. Low gold-leaching. Good thermal fatigue properties.8119
In52Sn48118yesIn52. Suitable for the cases where low-temperature soldering is needed. Can be used for glass sealing.[58] Sharp melting point. Good wettability of glass, quartz, and many ceramics. Good low-temperature malleability, can compensate for different thermal expansion coefficients of joined materials.4852
Sn52In48118/131[14]novery low tensile strength5248
Sn58In42118/145[70]no5842
Sn51.2Pb30.6Cd18.2145[71]Pb,CdyesGeneral-purpose. Maintains creep strength well. Unsuitable for gold.51.230.618.2
Sn77.2In20Ag2.8175/187[72]noSimilar mechanical properties with Sn63Pb37, Sn62Pb36Ag2 and Sn60Pb40, suitable lead-free replacement. Contains eutectic Sn-In phase with melting point at 118 °C, avoid use above 100 °C.77.22.820
In74Cd26123[73]Cdyes7426
In61.7Bi30.8Cd7.562[74]Cdyes30.861.77.5
Bi47.5Pb25.4Sn12.6Cd9.5In557/65[75]Pb,Cdno12.625.447.559.5
Bi48Pb25.4Sn12.8Cd9.6In461/65[76]Pb,Cdno12.825.4489.6
Bi49Pb18Sn15In1858/69[77]Pbno15184918
Bi49Pb18Sn12In2158PbyesCerrolow 136. Slightly expands on cooling, later shows slight shrinkage in couple hours afterwards. Used as a solder in low-temperature physics.[34]12184921
Bi50.5Pb27.8Sn12.4Cd9.370/73[78]Pb,Cdno12.427.850.59.3
Bi50Pb26.7Sn13.3Cd1070Pb,CdyesCerrobend. Used in low-temperature physics as a solder.[34]13.326.75010
Bi44.7Pb22.6In19.1Cd5.3Sn8.347Cd,PbyesCerrolow 117. Used as a solder in low-temperature physics.[34]8.322.644.719.15.3
In60Sn40113/122[14]no4060
In51.0Bi32.5Sn16.560.5yesField's metal16.532.551
Bi49.5Pb27.3Sn13.1Cd10.170.9Pb,CdyesLipowitz Metal13.127.349.510.1
Bi50.0Pb25.0Sn12.5Cd12.571Pb,CdyesWood's metal, mostly used for casting.12.5255012.5
Bi50.0Pb31.2Sn18.897PbnoNewton's metal18.831.250
Bi50Pb28Sn22109PbnoRose's metal. It was used to secure cast iron railings and balusters in pockets in stone bases and steps. Does not contract on cooling.222850
Cd95Ag5338/393 [79]CdnoKappTec General purpose solder that will join all solderable metals except Aluminum. High temperature, high strength solder. It is used in applications where alloys melting higher than soft solders are required, but the cost and strength of Silver-brazing alloys is not necessary.[79]595
Cd82.5Zn17.5265[80]CdyesMedium temperature alloy that provide strong, corrosion-resistant joints on most metals.[80] Also for soldering aluminium and die-cast zinc alloys.[20] Used in cryogenic physics for ataching electrical potential leads to specimens of metals, as this alloy does not become superconductive at liquid helium temperatures.[34]17.582.5
Cd70Zn30265/300[80]CdnoMedium temperature alloy that provide strong, corrosion-resistant joints on most metals. Works especially well on Aluminum-to-Aluminum and Aluminum-to-Copper joints, with excellent corrosion resistance and superior strength in high vibration and high stress applications in electronics, lighting and electrical products.[80]3070
Cd60Zn40265/316[80]CdnoMedium temperature alloy that provide strong, corrosion-resistant joints on most metals. Works especially well on Aluminum-to-Aluminum and Aluminum-to-Copper joints, with excellent corrosion resistance and superior strength in high vibration and high stress applications in electronics, lighting and electrical products.[80]4060
Cd78Zn17Ag5249/316[81]CdnoKappTecZ High temperature, high strength solder that may be used on most metals, but works extremely well on Aluminum, Copper and Stainless Steel. It has a high tolerance to vibration and stress, and good elongation for use on dissimilar metals. Above its liquidus of 600°F, this solder is extremely fluid and will penetrate the closest joints.[81]51778
Sn40Zn27Cd33176/260[82]CdnoKappRad[82] Developed specifically to join and repair Aluminum and Aluminum/Copper radiators and heat exchangers. A lower melting point makes delicate repair work easier.[82]402733
Zn90Cd10265/399CdFor soldering aluminium. Good wetting.[54]9010
Zn60Cd40265/335CdFor soldering aluminium. Very good wetting.[54]6040
Cd70Sn30140/160[15]CdnoCd70, thermal-free solder. Produces low thermal EMF joints in copper, does not form parasitic thermocouples. Used in low-temperature physics.[34]29.5670.44
Sn50Pb32Cd18145[15]Cd,PbCd18503218
Sn40Pb42Cd18145[83]Cd,PbLow melting temperature allows repairing pewter and zinc objects, including die-cast toys.404218
Zn70Sn30199/376noFor soldering aluminium. Excellent wetting.[41] Good strength.3070
Zn60Sn40199/341noFor soldering aluminium. Good wetting.[54]4060
Zn95Sn5382yes?For soldering aluminium. Excellent wetting.[41]595
Sn90Au10217[84]yes9010
Au80Sn20280yesAu80. Good wetting, high strength, low creep, high corrosion resistance, high thermal conductivity, high surface tension, zero wetting angle. Suitable for step soldering. The original flux-less alloy, does not need flux. Used for die attachment and attachment of metal lids to semiconductor packages, e.g. kovar lids to ceramic chip carriers. Coefficient of expansion matching many common materials. Due to zero wetting angle requires pressure to form a void-free joint. Alloy of choice for joining gold-plated and gold-alloy plated surfaces. As some gold dissolves from the surfaces during soldering and moves the composition to non-eutectic state (1% increase of Au content can increase melting point by 30 °C), subsequent desoldering requires higher temperature.[85] Forms a mixture of two brittle intermetallic phases, AuSn and Au5Sn.[86] Brittle. Proper wetting achieved usually by using nickel surfaces with gold layer on top on both sides of the joint. Comprehensively tested through military standard environmental conditioning. Good long-term electrical performance, history of reliability.[32] Low vapor pressure, suitable for vacuum work. Generally used in applications that require a melting temperature over 150°C.[87] Good ductility. Also classified as a braze.2080
Au98Si2370/800[15]Au98. A non-eutectic alloy used for die attachment of silicon dies. Ultrasonic assistance is needed to scrub the chip surface so a eutectic (3.1% Si) is reached at reflow.98Si2
Au96.8Si3.2370[15] 363[88]yesAu97.[85] AuSi3.2 is a eutectic with melting point of 363 °C. AuSi forms a meniscus at the edge of the chip, unlike AuSn, as AuSi reacts with the chip surface. Forms a composite material structure of submicron silicon plates in soft gold matrix. Tough, slow crack propagation.[50]96.8Si3.2
Au87.5Ge12.5361 356[15]yesAu88. Used for die attachment of some chips.[14] The high temperature may be detrimental to the chips and limits reworkability.[32]87.5Ge12.5
Au82In18451/485[15]noAu82. High-temperature, extremely hard, very stiff.1882
In100157pureIn99. Used for die attachment of some chips. More suitable for soldering gold, dissolution rate of gold is 17 times slower than in tin-based solders and up to 20% of gold can be tolerated without significant embrittlement. Good performance at cryogenic temperatures.[89] Wets many surfaces incl. quartz, glass, and many ceramics. Deforms indefinitely under load. Does not become brittle even at low temperatures. Used as a solder in low-temperature physics, will bond to aluminium. Can be used for soldering to thin metal films or glass with an ultrasonic soldering iron.[34]99.99

Notes on the above table[edit]

Temperature ranges for solidus and liquidus (the boundaries of the mushy state) are listed as solidus/liquidus.[14]

In the Sn-Pb alloys, tensile strength increases with increasing tin content. Indium-tin alloys with high indium content have very low tensile strength.[14]

For soldering semiconductor materials, e.g. die attachment of silicon, germanium and gallium arsenide, it is important that the solder contains no impurities that could cause doping in the wrong direction. For soldering n-type semiconductors, solder may be doped with antimony; indium may be added for soldering p-type semiconductors. Pure tin and pure gold can be used.[41]

Various fusible alloys can be used as solders with very low melting points; examples include Field's metal, Lipowitz's alloy, Wood's metal, and Rose's metal.

Properties[edit]

The thermal conductivity of common solders ranges from 32 to 94 W/(m·K) and the density from 9.25 to 15.00 g/cm3.[90][91]

MaterialThermal conductivity
[W/(m*K)]
Melting point
[°C]
Sn-37Pb (eutectic)50.9183
Sn-2.8Ag-20.0In53.5175 – 186
Sn-2.5Ag-0.8Cu-0.5Sb57.26215 – 217
Pb-5Sn63310
Lead (Pb)35.0327.3
Tin (Sn)73.0231.9
Aluminum (Al)240660.1
Copper (Cu)393 - 4011083
FR-41.7

[91]

Solidifying[edit]

The solidifying behavior depends on the alloy composition. Pure metals solidify at a sharply defined temperature, forming crystals of one phase. Eutectic alloys also solidify at a single temperature, all components precipitating simultaneously in so-called coupled growth. Non-eutectic compositions on cooling start to first precipitate the non-eutectic phase; dendrites when it is a metal, large crystals when it is an intermetallic compound. Such a mixture of solid particles in a molten eutectic is referred to as a mushy state. Even a relatively small proportion of solids in the liquid can dramatically lower its fluidity.[51]

The temperature of total solidification is the solidus of the alloy, the temperature at which all components are molten is the liquidus.

The mushy state is desired where a degree of plasticity is beneficial for creating the joint, allowing filling larger gaps or being wiped over the joint (e.g. when soldering pipes). In hand soldering of electronics it may be detrimental as the joint may appear solidified while it is not yet. Premature handling of such joint then disrupts its internal structure and leads to compromised mechanical integrity.

Alloying element roles[edit]

Different elements serve different roles in the solder alloy:

Impurities in solders[edit]

Impurities usually enter the solder reservoir by dissolving the metals present in the assemblies being soldered. Dissolving of process equipment is not common as the materials are usually chosen to be insoluble in solder.[95]

Intermetallics in solders[edit]

Many different intermetallic compounds are formed during solidifying of solders and during their reactions with the soldered surfaces.[95]

The intermetallics form distinct phases, usually as inclusions in a ductile solid solution matrix, but also can form the matrix itself with metal inclusions or form crystalline matter with different intermetallics. Intermetallics are often hard and brittle. Finely distributed intermetallics in a ductile matrix yield a hard alloy while coarse structure gives a softer alloy. A range of intermetallics often forms between the metal and the solder, with increasing proportion of the metal; e.g. forming a structure of Cu-Cu3Sn-Cu6Sn5-Sn.

Layers of intermetallics can form between the solder and the soldered material. These layers may cause mechanical reliability weakening and brittleness, increased electrical resistance, or electromigration and formation of voids. The gold-tin intermetallics layer is responsible for poor mechanical reliability of tin-soldered gold-plated surfaces where the gold plating did not completely dissolve in the solder.

Gold and palladium readily dissolve in solders. Copper and nickel tend to form intermetallic layers during normal soldering profiles. Indium forms intermetallics as well.

Indium-gold intermetallics are brittle and occupy about 4 times more volume than the original gold. Bonding wires are especially susceptible to indium attack. Such intermetallic growth, together with thermal cycling, can lead to failure of the bonding wires.[96]

Copper plated with nickel and gold is often used. The thin gold layer facilitates good solderability of nickel as it protects the nickel from oxidation; the layer has to be thin enough to rapidly and completely dissolve so bare nickel is exposed to the solder.[10]

Lead-tin solder layers on copper leads can form copper-tin intermetallic layers; the solder alloy is then locally depleted of tin and form a lead-rich layer. The Sn-Cu intermetallics then can get exposed to oxidation, resulting in impaired solderability.[97]

Two processes play role in a solder joint formation: interaction between the substrate and molten solder, and solid-state growth of intermetallic compounds. The base metal dissolves in the molten solder in an amount depending on its solubility in the solder. The active constituent of the solder reacts with the base metal with a rate dependent on the solubility of the active constituents in the base metal. The solid-state reactions are more complex - the formation of intermetallics can be inhibited by changing the composition of the base metal or the solder alloy, or by using a suitable barrier layer to inhibit diffusion of the metals.[98]

TinLeadIndium
CopperCu4Sn, Cu6Sn5, Cu3Sn, Cu3Sn8Cu3In, Cu9In4
NickelNi3Sn, Ni3Sn2, Ni3Sn4 NiSn3Ni3In, NiIn Ni2In3, Ni3In7
IronFeSn, FeSn2
IndiumIn3Sn, InSn4In3Pb
AntimonySbSn
BismuthBiPb3
SilverAg6Sn, Ag3SnAg3In, AgIn2
GoldAu5Sn, AuSn AuSn2, AuSn4Au2Pb, AuPb2AuIn, AuIn2
PalladiumPd3Sn, Pd2Sn, Pd3Sn2, PdSn, PdSn2, PdSn4Pd3In, Pd2In, PdIn Pd2In3
PlatinumPt3Sn, Pt2Sn, PtSn, Pt2Sn3, PtSn2, PtSn4Pt3Pb, PtPb PtPb4Pt2In3, PtIn2, Pt3In7

Glass solder[edit]

Glass solders are used to join glasses to other glasses, ceramics, metals, semiconductors, mica, and other materials, in a process called glass frit bonding. The glass solder has to flow and wet the soldered surfaces well below the temperature where deformation or degradation of either of the joined materials or nearby structures (e.g., metallization layers on chips or ceramic substrates) occurs. The usual temperature of achieving flowing and wetting is between 450 and 550 °C.

Two types of glass solders are used: vitreous, and devitrifying. Vitreous solders retain their amorphous structure during remelting, can be reworked repeatedly, and are relatively transparent. Devitrifying solders undergo partial crystallization during solidifying, forming a glass-ceramic, a composite of glassy and crystalline phases. Devitrifying solders usually create a stronger mechanical bond, but are more temperature-sensitive and the seal is more likely to be leaky; due to their polycrystalline structure they tend to be translucent or opaque.[99] Devitrifying solders are frequently "thermosetting", as their melting temperature after recrystallization becomes significantly higher; this allows soldering the parts together at lower temperature than the subsequent bake-out without remelting the joint afterwards. Devitrifying solders frequently contain up to 25% zinc oxide. In production of cathode ray tubes, devitrifying solders based on PbO-B2O3-ZnO are used.

Very low temperature melting glasses, fluid at 200–400 °C, were developed for sealing applications for electronics. They can consist of binary or ternary mixtures of thallium, arsenic and sulfur.[100] Zinc-silicoborate glasses can also be used for passivation of electronics; their coefficient of thermal expansion must match silicon (or the other semiconductors used) and they must not contain alkaline metals as those would migrate to the semiconductor and cause failures.[101]

The bonding between the glass or ceramics and the glass solder can be either covalent, or, more often, van der Waals.[102] The seal can be leak-tight; glass soldering is frequently used in vacuum technology. Glass solders can be also used as sealants; a vitreous enamel coating on iron lowered its permeability to hydrogen 10 times.[103] Glass solders are frequently used for glass-to-metal seals and glass-ceramic-to-metal seals.

Glass solders are available as frit powder with grain size below 60 micrometers. They can be mixed with water or alcohol to form a paste for easy application, or with dissolved nitrocellulose or other suitable binder for adhering to the surfaces until being melted.[104] The eventual binder has to be burned off before melting proceeds, requiring careful firing regime. The solder glass can be also applied from molten state to the area of the future joint during manufacture of the part. Due to their low viscosity in molten state, lead glasses with high PbO content (often 70–85%) are frequently used. The most common compositions are based on lead borates (leaded borate glass or borosilicate glass). Smaller amount of zinc oxide or aluminium oxide can be added for increasing chemical stability. Phosphate glasses can be also employed. Zinc oxide, bismuth trioxide, and copper(II) oxide can be added for influencing the thermal expansion; unlike the alkali oxides, these lower the softening point without increasing of thermal expansion.

Glass solders are frequently used in electronic packaging. CERDIP packagings are an example. Outgassing of water from the glass solder during encapsulation was a cause of high failure rates of early CERDIP integrated circuits. Removal of glass-soldered ceramic covers, e.g., for gaining access to the chip for failure analysis or reverse engineering, is best done by shearing; if this is too risky, the cover is polished away instead.[105]

As the seals can be performed at much lower temperature than with direct joining of glass parts and without use of flame (using a temperature-controlled kiln or oven), glass solders are useful in applications like subminiature vacuum tubes or for joining mica windows to vacuum tubes and instruments (e.g., Geiger tube). Thermal expansion coefficient has to be matched to the materials being joined and often is chosen in between the coefficients of expansion of the materials. In case of having to compromise, subjecting the joint to compression stresses is more desirable than to tensile stresses. The expansion matching is not critical in applications where thin layers are used on small areas, e.g., fireable inks, or where the joint will be subjected to a permanent compression (e.g., by an external steel shell) offsetting the thermally introduced tensile stresses.[100]

Glass solder can be used as an intermediate layer when joining materials (glasses, ceramics) with significantly different coefficient of thermal expansion; such materials cannot be directly joined by diffusion welding.[106] Evacuated glazing windows are made of glass panels soldered together.[107]

A glass solder is used, e.g., for joining together parts of cathode ray tubes and plasma display panels. Newer compositions lowered the usage temperature from 450 to 390 °C by reducing the lead(II) oxide content down from 70%, increasing the zinc oxide content, adding titanium dioxide and bismuth(III) oxide and some other components. The high thermal expansion of such glass can be reduced by a suitable ceramic filler. Lead-free solder glasses with soldering temperature of 450 °C were also developed.

Phosphate glasses with low melting temperature were developed. One of such compositions is phosphorus pentoxide, lead(II) oxide, and zinc oxide, with addition of lithium and some other oxides.[108]

Conductive glass solders can be also prepared.

Preform[edit]

A preform is a pre-made shape of solder specially designed for the application where it is to be used.[109] Many methods are used to manufacture the solder preform, stamping being the most common. The solder preform may include the solder flux needed for the soldering process. This can be an internal flux, inside the solder preform, or external, with the solder preform coated.[110]

See also[edit]

References[edit]

  1. ^ a b "solder". Oxford Dictionaries. 
  2. ^ Oxford American Dictionary
  3. ^ Frank Oberg, Franklin D. Jones, Holbrook L.Horton, Henry H. Ryffel (ed) Machinery's Handbook 23rd Edition Industrial Press Inc., 1988, ISBN 0-8311-1200-X, page 1203
  4. ^ Harper, Douglas. "solder". Online Etymology Dictionary. 
  5. ^ a b Madhav Datta, Tetsuya Ōsaka, Joachim Walter Schultze (2005). Microelectronic packaging. CRC Press. p. 196. ISBN 0-415-31190-X. 
  6. ^ Needleman, HL; Schell, A; Bellinger, D; Leviton, A; Allred, EN (1990). "The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report.". The New England Journal of Medicine 322 (2): 83–8. doi:10.1056/NEJM199001113220203. PMID 2294437. 
  7. ^ Joseph R. Davis (2001). Alloying: understanding the basics. ASM International. p. 538. ISBN 0-87170-744-6. 
  8. ^ a b c d e f g h i Howard H. Manko (2001). Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill Professional. p. 164. ISBN 0-07-134417-9. 
  9. ^ A. C. Tan (1989). Lead finishing in semiconductor devices: soldering. World Scientific. p. 45. ISBN 9971-5-0679-3. 
  10. ^ a b c d e Karl J. Puttlitz, Kathleen A. Stalter (2004). Handbook of lead-free solder technology for microelectronic assemblies. CRC Press. p. 541. ISBN 0-8247-4870-0. 
  11. ^ a b c d e f Ganesan and Pecht p. 110
  12. ^ a b "Galvanite". Retrieved 23 October 2012. 
  13. ^ a b c "Kapp Eco Babbitt". Retrieved 4 April 2013. 
  14. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Charles A. Harper (2003). Electronic materials and processes. McGraw-Hill Professional. pp. 5–8. ISBN 0-07-140214-4. 
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Alloy information
  16. ^ a b c d e f g h i j k l m n o p q r s Ray P. Prasad (1997). Surface mount technology: principles and practice. Springer. p. 385. ISBN 0-412-12921-3. 
  17. ^ a b c d e f g h i j k l SOLDER ALLOYS Selection Chart. (PDF) . Retrieved on 2010-07-06.
  18. ^ http://www.analog.com/library/analogDialogue/archives/39-05/Web_Ch4_final.pdf
  19. ^ a b c d e f g h Madara Ogot, Gul Okudan-Kremer (2004). Engineering design: a practical guide. Trafford Publishing. p. 445. ISBN 1-4120-3850-2. 
  20. ^ a b c d e f g h Kaushish (2008). Manufacturing Processes. PHI Learning Pvt. Ltd. p. 378. ISBN 81-203-3352-7. 
  21. ^ a b c d "Kapp GalvRepair". Kapp Alloy & Wire, Inc. Retrieved 23 October 2012. 
  22. ^ 3439-00-577-7594 Solder, Tin Alloy. Tpub.com. Retrieved on 2010-07-06.
  23. ^ a b c d e f msl747.PDF. (PDF) . Retrieved on 2010-07-06.
  24. ^ a b c d Pajky_vkladanylist_Cze_ang_2010.indd. (PDF) . Retrieved on 2010-07-06.
  25. ^ Balver Zinn Solder Sn63Pb37
  26. ^ Balver Zinn Solder Sn63PbP
  27. ^ a b c d e John H. Lau (1991). Solder joint reliability: theory and applications. Springer. p. 178. ISBN 0-442-00260-2. 
  28. ^ Indalloy 228 Pb-Sn-Ag Solder Alloy
  29. ^ Indium Corp. Indalloy 290 In-Ag Solder Alloy
  30. ^ Indalloy 3 In-Ag Solder Alloy
  31. ^ Indalloy 204 In-Pb Solder Alloy
  32. ^ a b c d Merrill L. Minges (1989). Electronic Materials Handbook: Packaging. ASM International. p. 758. ISBN 0-87170-285-1. 
  33. ^ Indalloy 1 Indium-Tin Solder Alloy
  34. ^ a b c d e f g h i Guy Kendall White; Philip J. Meeson (2002). Experimental techniques in low-temperature physics. Clarendon. pp. 207–. ISBN 978-0-19-851428-2. Retrieved 14 May 2011. 
  35. ^ Indalloy 13 Indium Solder Alloy
  36. ^ Indalloy 10 Pb-In Solder Alloy
  37. ^ Indalloy 9 Sn-Pb-In Solder Alloy
  38. ^ 94.5Pb-5.5Ag Lead-Silver Solder, ASTM Class 5.5S; UNS L50180
  39. ^ Indalloy 175 Lead Solder Alloy
  40. ^ 97.5Pb-2.5Ag Lead-Silver Solder, ASTM Class 2.5S UNS L50132
  41. ^ a b c d e Symposium on Solder. ASTM International. 1957. p. 114. 
  42. ^ Balver Zinn Solder SN97C (SnAg3.0Cu0.5)
  43. ^ Balver Zinn Solder SN96C (SnAg3,8Cu0,7)
  44. ^ Indalloy 252 95.5Sn/3.9Ag/0.6Cu Lead-Free Solder Alloy
  45. ^ Indalloy 246 95.5Sn/4.0Ag/0.5Cu Lead-Free Solder Alloy
  46. ^ "KappFree". Kapp Alloy & Wire, Inc. Retrieved 25 October 2012. 
  47. ^ a b Solder selection for photonic packaging
  48. ^ a b c d e f "KappZapp". Kapp Alloy & Wire, Inc. Retrieved 25 October 2012. 
  49. ^ "KappZapp7". SolderDirect.com. Retrieved 25 October 2012. 
  50. ^ a b Ganesan and Pecht p. 404
  51. ^ a b The Fluidity of the Ni-Modified Sn-Cu Eutectic Lead Free Solder
  52. ^ Balver Zinn Solder SCA (SnCu0.7Ag0.3)
  53. ^ Balver Zinn Solder Sn97Cu3
  54. ^ a b c d e Howard H. Manko (8 February 2001). Solders and soldering: materials, design, production, and analysis for reliable bonding. McGraw-Hill Professional. pp. 396–. ISBN 978-0-07-134417-3. Retrieved 17 April 2011. 
  55. ^ a b c d e f g h i j "KappAloy". Kapp Alloy & Wire, Inc. Retrieved 23 October 2012. 
  56. ^ Indalloy 249 91.8Sn/3.4Ag/4.8Bi Lead-Free Solder Alloy
  57. ^ Composition And Physical Properties Of Alloys. Csudh.edu (2007-08-18). Retrieved on 2010-07-06.
  58. ^ a b c d Karl J. Puttlitz, Kathleen A. Stalter (2004). Handbook of lead-free solder technology for microelectronic assemblies. CRC Press. ISBN 0-8247-4870-0. 
  59. ^ Indalloy 226 Tin Solder Alloy
  60. ^ Indalloy 231 Sn-Zn-In-Bi Solder Alloy
  61. ^ Indalloy 254 86.9Sn/10.0In/3.1Ag Lead-Free Solder Alloy
  62. ^ Indalloy 131 97Sn/3Sb Lead-Free Solder Alloy
  63. ^ Indalloy 129 99Sn/1Sb Lead-Free Solder Alloy
  64. ^ Indalloy 282 57Bi/42Sn/1Ag Lead-Free Solder Alloy
  65. ^ Indalloy 281 Bi-Sn Solder Alloy
  66. ^ Indalloy 67 Bismuth-Lead Solder Alloy
  67. ^ Indalloy 2 In-Pb-Ag Solder Alloy
  68. ^ Indalloy 532 Tin Solder Alloy
  69. ^ Indalloy 150 Pb-In Solder Alloy
  70. ^ Indalloy 87 Indium-Tin Solder Alloy
  71. ^ Indalloy 181 Sn-Pb-Cd Solder Alloy
  72. ^ Indalloy 227 Sn-In-Ag Solder Alloy
  73. ^ Indalloy 253 Indium Solder Alloy
  74. ^ Indalloy 18 Indium Solder Alloy
  75. ^ Indalloy 140 Bismuth Solder Alloy
  76. ^ Indalloy 147 Bismuth Solder Alloy
  77. ^ Indalloy 21 Bismuth Solder Alloy
  78. ^ Indalloy 22 Bismuth Solder Alloy
  79. ^ a b "KappTec". Kapp Alloy & Wire, Inc. Retrieved 23 October 2012. 
  80. ^ a b c d e f "Kapp Cad/Zinc". Kapp Alloy & Wire, Inc. Retrieved 23 October 2012. 
  81. ^ a b "KappTecZ". Kapp Alloy & Wire, Inc. Retrieved 25 October 2012. 
  82. ^ a b c "KappRad". Kapp Alloy & Wire, Inc. Retrieved 25 October 2012. 
  83. ^ Soft Solders. www.cupalloys.co.uk (2009-01-20). Retrieved on 2010-07-06.
  84. ^ Indalloy 238 Sn-Au Solder Alloy
  85. ^ a b Gold Tin – The Unique Eutectic Solder Alloy
  86. ^ "Chip Scale Review Magazine". Chipscalereview.com. 2004-04-20. Retrieved 2010-03-31. 
  87. ^ Indalloy 182 Gold-Tin Solder Paste.
  88. ^ Indalloy 184 Gold Solder Alloy
  89. ^ T.Q. Collier (May–Jun 2008). "Choosing the best bumb for the buck". Advanced Packaging 17 (4): 24. ISSN 1065-0555. 
  90. ^ Thermal Properties of Metals, Conductivity, Thermal Expansion, Specific Heat
  91. ^ a b "Database for Solder Properties with Emphasis on New Lead-free Solders". metallurgy.nist.gov. 2012-07-10. Retrieved 2013-06-08. 
  92. ^ a b c King-Ning-Tu - Solder Joint Technology - Materials, Properties, and Reliability (Springer 2007)
  93. ^ I. R. Walker (31 March 2011). Reliability in Scientific Research: Improving the Dependability of Measurements, Calculations, Equipment, and Software. Cambridge University Press. pp. 160–. ISBN 978-0-521-85770-3. Retrieved 14 May 2011. 
  94. ^ Balver Zinn Desoxy RSN
  95. ^ a b Michael Pecht (1993). Soldering processes and equipment. Wiley-IEEE. p. 18. ISBN 0-471-59167-X. 
  96. ^ http://nepp.nasa.gov/wirebond/literatures/na-gsfc-2004-01.pdf GSFC NASA Advisory: Indium solder encapsulating gold bonding wire leads to fragile gold-indium compounds and an unreliable condition that results in wire interconnection rupture
  97. ^ Jennie S. Hwang (1996). Modern solder technology for competitive electronics manufacturing. McGraw-Hill Professional. p. 397. ISBN 0-07-031749-6. 
  98. ^ D. R. Frear, Steve Burchett, Harold S. Morgan, John H. Lau (1994). The Mechanics of solder alloy interconnects. Springer. p. 51. ISBN 0-442-01505-4. 
  99. ^ Merrill L. Minges (1989). Electronic Materials Handbook: Packaging. ASM International. p. 239. ISBN 0-87170-285-1. 
  100. ^ a b Walter Heinrich Kohl (1995). Handbook of materials and techniques for vacuum devices. Springer. p. 51. ISBN 978-1-56396-387-2. 
  101. ^ Brian Caddy (2001). Forensic examination of glass and paint: analysis and interpretation. CRC Press. p. 40. ISBN 0-7484-0579-8. 
  102. ^ Robert W. Messler (2004). Joining of materials and structures: from pragmatic process to enabling technology. Butterworth-Heinemann. p. 389. ISBN 0-7506-7757-0. 
  103. ^ Alexander Roth (1994). Vacuum sealing techniques. Springer. p. 273. ISBN 1563962594. 
  104. ^ Heinz G. Pfaender (1996). Schott guide to glass. Springer. p. 30. ISBN 0-412-62060-X. 
  105. ^ Friedrich Beck (1998). Integrated circuit failure analysis: a guide to preparation techniques. John Wiley and Sons. p. 8. ISBN 0-471-97401-3. 
  106. ^ Norbert Kockmann (2006). Micro process engineering: fundamentals, devices, fabrication, and applications. Wiley-VCH. p. 374. ISBN 3-527-31246-3. 
  107. ^ Shirley Morris (2007). Interior Decoration – A Complete Course. Global Media. p. 96. ISBN 81-89940-65-1. 
  108. ^ Dagmar Hülsenberg, Alf Harnisch, Alexander Bismarck (2008). Microstructuring of Glasses. Springer. ISBN 3-540-26245-8. 
  109. ^ Solder Preforms
  110. ^ "Preforms". Arraysolders. Retrieved 2011-03-15. 

Bibliography[edit]

External links[edit]