Skin grafting

From Wikipedia, the free encyclopedia - View original article

Skin grafting
Intervention
Skin graft treated with vacuum assisted closure for five days.jpg
Skin graft on lower leg trauma injury, 5 days after surgery healing aided by use of a vacuum dressing
ICD-9-CM86.6
MedlinePlus002982
 
Jump to: navigation, search
Skin grafting
Intervention
Skin graft treated with vacuum assisted closure for five days.jpg
Skin graft on lower leg trauma injury, 5 days after surgery healing aided by use of a vacuum dressing
ICD-9-CM86.6
MedlinePlus002982

Skin grafting is a type of graft surgery involving the transplantation of skin. The transplanted tissue is called a skin graft.[1]

Skin grafting is often used to treat:

Skin grafts are often employed after serious injuries when some of the body's skin is damaged. Surgical removal (excision or debridement) of the damaged skin is followed by skin grafting. The grafting serves two purposes: reduce the course of treatment needed (and time in the hospital), and improve the function and appearance of the area of the body which receives the skin graft.

There are two types of skin grafts, the more common type is where a thin layer is removed from a healthy part of the body (the donor section) like peeling a potato, or a full thickness skin graft, which involves pitching and cutting skin away from the donor section. A full thickness skin graft is more risky, in terms of the body accepting the skin, yet it leaves only a scar line on the donor section, similar to a Cesarean section scar. For full thickness skin grafts, the donor section will often heal much more quickly than the injury and is less painful than a partial thickness skin graft.

Graft taxonomy[edit]

Graft classification[edit]

Skin grafts can be:

Split-thickness

A split-thickness skin graft (STSG) is a skin graft including the epidermis and part of the dermis. Its thickness depends on the donor site and the needs of the patient. It can be processed through a skin mesher which makes apertures onto the graft, allowing it to expand up to nine times its size. Split-thickness grafts are frequently used as they can cover large areas and the rate of autorejection is low. You can take from the same site again after six weeks.[4] The donor site heals by re-epithelialisation from the dermis and surrounding skin and requires dressings.

Full-thickness

A full-thickness skin graft consists of the epidermis and the entire thickness of the dermis. The donor site is either sutured closed directly or covered by a split-thickness skin graft.

Composite graft

A composite graft is a small graft containing skin and underlying cartilage or other tissue. Donor sites include, for example, ear skin and cartilage to reconstruct nasal alar rim defects.

Donor selection[edit]

When grafts are taken from other animals, they are known as heterografts or xenografts. By definition, they are temporary biologic dressings which the body will reject within days to a few weeks. They are useful in reducing the bacterial concentration of an open wound, as well as reducing fluid loss.

For more extensive tissue loss, a full-thickness skin graft, which includes the entire thickness of the skin, may be necessary. This is often performed for defects of the face and hand where contraction of the graft should be minimized. The general rule is that the thicker the graft, the less the contraction and deformity.

Cell cultured epithelial autograft (CEA) procedures take skin cells from the patient to grow new skin cells in sheets in a laboratory. The new sheets are used as grafts, and because the original skin cells came from the patient, the body does not reject them. Because these grafts are very thin (only a few cell layers thick) they do not stand up to trauma, and the "take" is often less than 100%. Newer grafting procedures combine CEA with a dermal matrix for more support.[clarify] Research is investigating the possibilities of combining CEA and a dermal matrix in one product.

Experimental procedures are being tested for burn victims using stem cells in solution which are applied to the burned area using a skin cell gun. Recent[when?] advances have been successful in applying the cells without damage.[citation needed]

Split skin graft donor site 8 days after the skin was taken

In order to remove the thin and well preserved skin slices and strips from the donor, surgeons use a special surgical instrument called a dermatome. This usually produces a split-thickness skin graft, which contains the epidermis with only a portion of the dermis. The dermis left behind at the donor site contains hair follicles and sebaceous glands, both of which contain epidermal cells which gradually proliferate out to form a new layer of epidermis. The donor site may be extremely painful and vulnerable to infection.

The graft is carefully spread on the bare area to be covered. It is held in place by a few small stitches or surgical staples. The graft is initially nourished by a process called plasmatic imbibition in which the graft "drinks plasma". New blood vessels begin growing from the recipient area into the transplanted skin within 36 hours in a process called capillary inosculation. To prevent the accumulation of fluid under the graft which can prevent its attachment and revascularization, the graft is frequently meshed by making lengthwise rows of short, interrupted cuts, each a few millimeters long, with each row offset by half a cut length like bricks in a wall. In addition to allowing for drainage, this allows the graft to both stretch and cover a larger area as well as to more closely approximate the contours of the recipient area. However, it results in a rather pebbled appearance upon healing that may ultimately look less aesthetically pleasing.[5]

An increasingly common aid to both pre-operative wound maintenance and post-operative graft healing is the use of negative pressure wound therapy (NPWT). This system works by placing a section of foam cut to size over the wound, then laying a perforated tube onto the foam. The arrangement is then secured with bandages. A vacuum unit then creates negative pressure, sealing the edges of the wound to the foam, and drawing out excess blood and fluids. This process typically helps to maintain cleanliness in the graft site, promotes the development of new blood vessels, and increases the chances of the graft successfully taking. NPWT can also be used between debridement and graft operations to assist an infected wound in remaining clean for a period of time before new skin is applied. Skin grafting can also be seen as a skin transplant

Risks[edit]

Risks for the skin graft surgery are:

Rejection may occur in xenografts. To prevent this, the patient usually must be treated with long-term immunosuppressant drugs.

Prognosis[edit]

Most skin grafts are successful, but in some cases they do not heal well and require repeat grafting. The graft should also be monitored for good circulation.

Recovery time from skin grafting can be long. Patients should wear compression garments for several months and should be monitored for depression and anxiety endemic to long-term pain and loss of function.[6]

References[edit]

  1. ^ "Plastic, Aesthetic and Reconstructive Surgery"
  2. ^ "Necrotizing fasciitis and purpura fulminans"
  3. ^ Weerda, Hilko (2001). Reconstructive Facial Plastic Surgery: A Problem-Solving Manual. ISBN 1-58890-076-2. 
  4. ^ Barret-Nerin, Juan; Herndon, David N. (2004). Principles and Practice of Burn Surgery. New York: Marcel Dekker. ISBN 0824754530. 
  5. ^ emedicine >Skin, Grafts Author: Benjamin C Wood. Coauthor(s): Christian N Kirman. Updated: Jan 29, 2010
  6. ^ "Skin Grafting: Aftercare". Encyclopedia of Surgery. Retrieved Sep 19, 2012. 

External links[edit]