Shade-grown coffee

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search

Shade-grown coffee is a form of the beverage produced from coffee plants grown under a canopy of trees. A canopy of assorted types of shade trees is created to cultivate shade-grown coffee. Because it incorporates principles of natural ecology to promote natural ecological relationships, shade-grown coffee can be considered an offshoot of agricultural permaculture or agroforestry. The resulting coffee is usually sold as “organic shade-grown”.

Coffee plants under a canopy of trees.
Shade grown coffee in Guatemala

History[edit]

Most of the original coffee plants brought to the New World from European countries would burn in the sun, which made shade necessary for growth. However, over the past 30 years new sun tolerant trees/shrubs have been developed in response to fungal disease presence, especially coffee leaf rust (Hemileia vastatrix), and with the aim to yield higher production rates.[1] As a result of modernization and a push for higher yielding crops, sun tolerant coffee plants were created to produce three times more coffee than a shade bush in a year, but the cultivation practices used for them are considered unsustainable and often have a negative impact on the environment. This has resulted in a new trend in support of shade-grown coffee.[2][3]

Ecological impacts[edit]

Species diversity[edit]

Recent data have shown that there is a direct correlation between the structural complexity of a coffee plantation and the number of species that can be found there. The forest-like structure of shade coffee farms provides habitat for a great number of migratory and resident birds, reptiles, ants, butterflies, bats, plants and other organisms. Of all agricultural land uses, shade-grown coffee is most likely the crop that supports the highest diversity of migratory birds, native flora and fauna.[4] In all of the studies a clear spectrum of species richness emerged ranging from high species diversity in “rustic” shaded polycultures to extremely low species diversity in unshaded monocultures.[5]

Plants[edit]

Plant richness in traditional “rustic” plantations can be extremely high, ranging from 90 to 120 species on a single site. Tree species richness in shade-grown coffee sites ranges from 13 to 58 species per site. Herb diversity was found to be 2 to 4 times that of tree diversity on any given site, and shrub diversity was fairly low in all sites. Epiphytes are also extremely diverse in shaded polycultures; 90 total epiphytic species were found in 10 sites of shade-grown coffee plots.[4]

Insects[edit]

Insect communities can be fairly complex in shaded coffee plantations. 609 species of insects from 258 families were found in a sample from ground level to 2 meters in a shaded polyculture coffee plantation near Tapachula, Chiapas. 37% of the individuals were herbivores that could be a potential crop pest if not kept in check by the predators and parasites, which represented 42% of the total species.[6]

Birds[edit]

Shade-grown coffee provides important habitat for both native and migratory bird species. 184 bird species, 46 being migratory, were recorded in traditional coffee plantations near Soconusco, Chiapas, while as few as 6 to 12 species were recorded in an unshaded monoculture.[6] In a study of shade vs. sun coffee comparisons in Guatemala, overall bird abundance and diversity were 30% and 15% greater, respectively, in shaded farms than sun farms. Shade-grown trees house two-thirds of the bird species found in natural forests in the same geographic areas.[4] Much greater densities of migratory birds were found in shade-grown coffee sites than in local natural habitats. This is most likely due to the greater abundances of bird-dispersed fruit trees, flowering plants, and insects found in the shade sites. Bird communities in traditional polycultures are composed mainly of canopy and midstory species feeding on fruit, insects, and nectar.[5]

Biotic processes[edit]

Pest control[edit]

The high species diversity found in shaded polycultures allows for relatively complex food webs to form. Birds and mammals alike play a large role in pest control by eating many herbivorous insects. In a study in Jamaica, birds were excluded from one coffee plantation and resulted in a 70% increase in the proportion of coffee fruits infected by the Coffee Berry Borer, an insect pest species. Biological control by birds acting as predators on the Coffee Berry Borer in Jamaica was calculated to be worth $75/hectare in 2005, averaging $1004/farm studied. This equals about 30% of the per capita gross national income for that time.[4] Another study in Puerto Rico used exclosure plots to exclude lizards, found to be more abundant in shade-grown coffee than sun-grown coffee, showed that the exclusion of lizards led to an increase in leafminers, an insect that is a serious pest to coffee plants.[4]

Pollination[edit]

Many species of bees are attracted to shaded polycultures that have a variety of flowering plants in addition to coffee. This increase in bee abundance results in a direct increase in the pollination of shade trees as well the coffee plants themselves. A study in Indonesia showed that bee species diversity increases fruit set in coffee; coffee plants visited by 3 species of bees had 60% fruit set while those with 20 species or more had 90% fruit set.[4]

Abiotic processes[edit]

Soil[edit]

The presence of canopy and midstory vegetation in shaded polycultures helps reduce soil erosion as well stabilize steep, mountainous slopes. The added leaf litter and other plant material from these shade trees also contributes to increased soil nutrients such as carbon and nitrogen. One comparison in Venezuela showed that unshaded coffee plantations lost twice as much soil to erosion as shaded plantations. In addition, soil moisture can be 42% lower in unshaded plantions than in shaded plantations, which affects biotic and abiotic processes in the environment.[4]

Water[edit]

There is significantly less runoff of surface water in shaded plantations than in unshaded plantations. This results in greater water retention as well as less leaching of nutrients in shaded plantations. Greater water retention is also important for recharging local watersheds. Sun-grown coffee requires numerous chemical fertilizers, insecticides, herbicides, fungicides, and pesticides to be added to promote growth. This also contributes to toxic water runoff and lack of habitat for many species. In contrast to the previous information regarding birds, sun-grown coffee provides shelter for less than one-tenth of bird species.[3]

Carbon sequestration and climate change[edit]

Carbon sinks and climate change[edit]

Just like natural forests, the carbon sequestered in a shade‐grown coffee farm’s shade trees will be stored in the tree trunks, limbs, leaves, and roots of the foliage as opposed to being in the atmosphere and adding to global warming. Soil also acts as a sink; soil in shade-grown coffee holds carbon from the organic matter that accumulates on the ground and gets broken down over time. A study on shade‐grown coffee systems in Indonesia showed that soil carbon stocks in the upper layer of soil were equal to 60% of those found in primary forest there, and they showed 58% more total carbon stock in soil and biomass than sun-grown coffee.[4]

Types of shade[edit]

Canopy coverage of a mostly traditional shade coffee plantation. Most of the canopy has been left undisturbed and coffee shrubs have been planted in the understory.
Coffee plantation with shade trees in Orosí, Costa Rica. The red trees in the background provide shade; those in the foreground have been pruned to allow full exposure to the sun.

Rustic[edit]

Rustic is the least intensive and rarest practice. With this method, coffee shrubs are planted in the existing forest with only the lowest strata of the forest removed and replaced with the coffee crop, so there is little alteration of the native plants. This coffee growing system features minimal management and no use of pesticides or herbicides. For this reason, a shade covered coffee plantation may survive economic setbacks by the farmer where an unshaded plantation would not.[7] Being the least capital-intensive method, the traditional rustic coffee system is marked by a low yield.[8]

Traditional polyculture[edit]

Traditional Polyculture involves the integration of beneficial plants, alongside intended coffee crops, which results in more species diversity than commercial polyculture. As with traditional rustic, traditional polyculture introduces coffee plants under the cover of the original canopy. These plants include those useful for home and market, those yielding food, fuel, and medicinal quality. This creates the highest level of “useful diversity” that can be reached in coffee farming.[8] Additionally, this crop diversification helps farmers when coffee prices are depressed.

Commercial polyculture[edit]

Commercial Polyculture is similar to traditional polyculture, but some foliage is removed to make room for more coffee shrubs or for trees more favorable to the farmers’ needs. Canopy trees are sometimes pruned, and epiphytes are typically removed. There are only two strata in this system, the canopy and the coffee. At this point fertilizers and pesticides are usually beginning to be needed. In this system, coffee yields are higher and production is driven exclusively by the market.

Shade monoculture[edit]

The shaded monoculture system uses a single, usually pruned canopy species to provide shade. In Mexico, for example, farmers will use almost exclusively leguminous trees (species of Inga) to provide shade for coffee bushes.[8] Coffee shrubs are planted more densely, and the farm looks very organized and deliberate with a focus on generating products that are solely market-based.

Unshaded monoculture[edit]

Full-Sun or Unshaded Monoculture represents a “modern” system with absolutely no canopy. Coffee bushes are exposed to direct sunlight and require high inputs of chemical fertilizers and pesticides as well as an intensive yearly work force. This system yields the highest output of coffee production.

Certification[edit]

Fair trade shade-grown coffee beans being sorted on a coffee plantation in Guatemala

The Bird Friendly coffee certification program, administered by the Smithsonian Migratory Bird Center (SMBC) has pioneered much of the research regarding the connection between birds, coffee and farming communities to understand the importance of setting standards to create healthy, producing forests.[2]

Rainforest Alliance Certified, is a certification program administered by the Rainforest Alliance, which has developed sustainable product certifications for coffee and many other products. Rainforest Alliance is a non-profit group with partners around the world to address the needs of farmers and meet the demands of consumers. Rainforest Alliance Certified farms cover produce coffee in the western hemisphere as well as Africa and Asia. Rainforest Alliance Certified coffee must meet rigorous criteria, including less water pollution, less soil erosion, reduced threats to the environment and human health along with other criteria that focus on sustainability and conservation.[9][10]

See also[edit]

Portal icon Coffee portal

References[edit]

  1. ^ Rice, Robert A.; Greenberg, Russell; van der Voort, Martha E. (1996). "Shade Coffee: A Disappearing Refuge for Biodiversity". BioScience 46 (8): 598–608. doi:10.2307/1312989. 
  2. ^ a b "Coffee Drinkers and Bird Lovers". www.nationalzoo.si.edu. Retrieved 28 November 2012. 
  3. ^ a b "About Shade Coffee". Shadecoffee.org. 2009. Retrieved 10 October 2012. 
  4. ^ a b c d e f g h Rice, Robert (2010). "The Ecological Benefits of Shade-Grown Coffee: The Case for Going Bird Friendly®.". Smithsonian. 
  5. ^ a b "Birds do Better in 'Agroforests' than on Farms.". ScienceDaily. 2012.  Retrieved 10 October 2012
  6. ^ a b Faminow, Merle D.; Rodriguez, Eloise A. (2001). Biodiversity of Flora and Fauna in Shaded Coffee Systems. ICRAF-Latin America Regional Office. pp. 27–29. 
  7. ^ Beer, John (1987). "Advantages, Disadvantages and Desirable Characteristics of Shade Trees for Coffee, Cacao and Tea". Agroforestry Systems 5: 4. 
  8. ^ a b c Moguel, Patricia; Toledo, Victor M. (1999). "Biodiversity Conservation in Traditional Coffee Systems of Mexico". Conservation Biology 13 (1): 11–21. doi:10.1046/j.1523-1739.1999.97153.x. 
  9. ^ "The SMBC Bird Friendly Criteria at a Glance". www.nationalzoo.si.edu. Retrieved 28 November 2012. 
  10. ^ "Rainforest Alliance Certified Coffee". www.rainforest-alliance.org. Retrieved 8 October 2012. 

External links[edit]