Rigel

From Wikipedia, the free encyclopedia - View original article

Rigel, Beta Ori
Orion IAU.svg
Cercle rouge 100%.svg

Location of Rigel (circled)
Observation data
Epoch J2000.0      Equinox J2000.0
ConstellationOrion
Pronunciation/ˈrəl/ or /-ɡəl/[1]
Right ascension05h 14m 32.27210s[2]
Declination−08° 12′ 05.8981″[2]
Apparent magnitude (V)0.12[3]
Characteristics
Spectral typeB8 Ia[4][5]
U−B color index−0.66[3]
B−V color index−0.03[3]
Variable typeAlpha Cygni[6]
Astrometry
Radial velocity (Rv)20.7[7] km/s
Proper motion (μ)RA: +1.31[2] mas/yr
Dec.: +0.50[2] mas/yr
Parallax (π)3.78 ± 0.34[2] mas
Distance860 ± 80 ly
(260 ± 20 pc)
Absolute magnitude (MV)–7.84 ± 0.2[8]
Details
Mass18[6] M
Radius74[4] R
Luminosity (bolometric)117,490[4] L
Surface gravity (log g)1.75 ± 0.10[8]
Temperature12,130[9] K
Metallicity [Fe/H]–0.06 ± 0.10[8] dex
Rotational velocity (v sin i)40[10] km/s
Age(8 ± 1) × 106[8] years
Other designations
Rigel, Algebar, Elgebar, β Ori, 19 Ori, HD 34085, HR 1713, HIP 24436, SAO 131907, TD1 4253.[11]
Database references
SIMBADdata
 
Jump to: navigation, search
Rigel, Beta Ori
Orion IAU.svg
Cercle rouge 100%.svg

Location of Rigel (circled)
Observation data
Epoch J2000.0      Equinox J2000.0
ConstellationOrion
Pronunciation/ˈrəl/ or /-ɡəl/[1]
Right ascension05h 14m 32.27210s[2]
Declination−08° 12′ 05.8981″[2]
Apparent magnitude (V)0.12[3]
Characteristics
Spectral typeB8 Ia[4][5]
U−B color index−0.66[3]
B−V color index−0.03[3]
Variable typeAlpha Cygni[6]
Astrometry
Radial velocity (Rv)20.7[7] km/s
Proper motion (μ)RA: +1.31[2] mas/yr
Dec.: +0.50[2] mas/yr
Parallax (π)3.78 ± 0.34[2] mas
Distance860 ± 80 ly
(260 ± 20 pc)
Absolute magnitude (MV)–7.84 ± 0.2[8]
Details
Mass18[6] M
Radius74[4] R
Luminosity (bolometric)117,490[4] L
Surface gravity (log g)1.75 ± 0.10[8]
Temperature12,130[9] K
Metallicity [Fe/H]–0.06 ± 0.10[8] dex
Rotational velocity (v sin i)40[10] km/s
Age(8 ± 1) × 106[8] years
Other designations
Rigel, Algebar, Elgebar, β Ori, 19 Ori, HD 34085, HR 1713, HIP 24436, SAO 131907, TD1 4253.[11]
Database references
SIMBADdata

Rigel (β Ori, β Orionis, Beta Orionis) is the brightest star in the constellation Orion and the sixth brightest star in the sky, with visual magnitude 0.18. The star as seen from earth is actually a triple star system, with the primary star (Rigel A) a blue-white supergiant of absolute magnitude –7.84 and around 117,000 times as luminous as our sun. An Alpha Cygni variable, it pulsates periodically. Visible in small telescopes, Rigel B is itself a spectroscopic binary system, consisting of two main sequence blue-white stars of spectral type B9.

Although Rigel has the Bayer designation "beta", it is almost always brighter than Alpha Orionis (Betelgeuse). Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.[12]

Contents

Physical properties

Rigel's place at top centre on the Hertzsprung-Russell diagram

Spectroscopic estimates of Rigel's distance place its distance between 700 and 900 light-years (210 and 280 pc), while Hipparcos's measurement of its parallax gives a distance of 860 light-years (260 pc), with a margin of error of about 9%.[2] It is a blue supergiant, at about 18 solar masses,[6] shining with approximately 117,000 times the luminosity of the Sun.[4] The interferometer-measured angular diameter of this star, after correction for limb darkening, is 2.75 ± 0.01 mas.[13] At its estimated distance, this yields a physical size of about 74 times the radius of the Sun.[4] If viewed from a distance of 1 astronomical unit, it would span an angular diameter of 35° and shine at magnitude −38.

As it is both bright and moving through a region of nebulosity, Rigel lights up several dust clouds in its vicinity, most notably the IC 2118 (the Witch Head Nebula).[14] Rigel is also associated with the Orion Nebula, which—while more or less along the same line of sight as the star—is almost twice as far away from Earth. Despite the difference in distance, projecting Rigel's path through space for its expected age brings it close to the nebula. As a result, Rigel is sometimes classified as an outlying member of the Orion OB1 Association, along with many of the other bright stars in that region of the sky; more specifically, it is a member of the Taurus-Orion R1 Association, with the OB1 Association reserved for stars closer to the nebula and more recently formed.[14]

Rigel is a variable supergiant. The reason of this is stellar pulsations. After the Deneb - the prototype of the class of Alpha Cygni pulsating stars - Rigel shows similar complex behavior. The radial velocity variations of Rigel proves that it simultaneously oscillates in at least 19 non-radial modes.[4] The variability periods range broadly from about 1.2 to 74 days. It is a noble star among other blue supergiant stars in a sense that its pulsations are powered by the nuclear reactions in the hydrogen burning shell.[6] The Rigel system is known to be composed of three stars. A fourth star in the system is sometimes proposed, but it is generally considered that this is a misinterpretation of the main star's variability, which may be caused by physical pulsation of the surface.[15]

Space photometry

Computer generated image of Rigel compared to the Sun (to scale)

Rigel was observed with the Canadian MOST satellite for nearly 28 days in 2009. The light variations in this supergiant star is in milli magnitude level. The gradual changes in the flux highlights the presence of long-period pulsation modes in the star.[4]

Spectroscopy

Rigel is surrounded by a shell of expelled gas. This occurs because when a red giant becomes a blue giant, the slow stellar winds of the former red giant are compressed the faster winds of the blue giant, therefore creating a shell.[14]

The general spectral type of Rigel as B8 is well established and it has been used as a defining point of the spectral classification sequence for supergiants. However the details of the spectrum vary considerably due to periodic atmospheric eruptions. The spectral lines show emission, absorption, line doubling, P Cygni profiles, and inverse P Cygni profiles, with no obvious periodicity.[5] This has resulted in classification as B8 Iab, B8 Iae, or blendings by different authors.

System

Rigel has been a known visual binary since at least 1831, when it was first measured by F. G. W. Struve. Though Rigel B is not particularly faint at magnitude 6.7, its closeness to Rigel A—which is over 500 times brighter—makes it a challenging target for telescopes smaller than 150 mm (5.9 in).[15] However a good 7 cm telescope will reveal Rigel B at 150x power and good seeing. At Rigel's estimated distance, Rigel B is separated from its primary by over 2200 AU (12 lightdays); not surprisingly, there has been no sign of orbital movement, though they share the same proper motion.[14][15]

Rigel B is itself a spectroscopic binary system, consisting of two main sequence stars that orbit their center of gravity every 9.8 days. The stars both belong to the spectral class B9V; Rigel B is the more massive of the pair, at 2.5 versus 1.9 solar masses.[14][15]

There was long-running controversy in the late 19th and early 20th century over the possible visible binarity of Rigel B. A number of experienced observers claimed to see it as a double, while others were unable to confirm it; indeed, the proponents themselves were sometimes unable to duplicate their results. Observations since have ruled out the likelihood of a visible companion to Rigel B.[14][15]

Etymology and cultural significance

English etymology

The star's name comes from its location at the "left foot" of Orion. It is a contraction of Riǧl Ǧawza al-Yusra, this being Arabic for left foot of the central one.[1] Another Arabic name is رجل الجبار riǧl al-ǧabbār, the foot of the great one (giant, conqueror, etc.), which is also the source of the rarely-used variant names Algebar or Elgebar.

The Alphonsine Tables saw its name split into "Rigel" and "Algebar".[16]

European significance

In stellar navigation, Rigel is one of the most important navigation stars, since it is bright, easily located and equatorial, which means it is visible all around the world's oceans.

Africa

In ancient Egypt Rigel's name was

S29Aa17V28D61N14
N35

Seba-en-Sah Sb3-n-S3ḥ, which means toe star or foot star.

East Asia

It is known as 参宿七 (Shēnxiù Qī, "The Seventh of the Three Stars") in Chinese. The name is because the Asterism of Three Stars was originally composed of just three stars, all of them in the girdle of the Orion. Later, four more stars were added to this asterism, but the name remained unchanged.

In Japan, the Minamoto or Genji clan had chosen Rigel and its white color as its symbol, calling the star Genji-boshi (源氏星), while the Taira or Heike clan adopted Betelgeuse and its red color. The two powerful families fought a legendary war in Japanese history, the stars seen as facing each other off and only kept apart by the Belt.[17][18][19] Rigel was also known as Gin-waki, (銀脇), "the Silver (Star) beside (Mitsu-boshi)."

Oceania

Rigel was known as Yerrerdet-kurrk to the Wotjobaluk koori of southeastern Australia, and held to be the mother-in-law of Totyerguil (Altair). The distance between them signified the taboo preventing a man from approaching his mother-in-law.[20]

The Maori people named Rigel as Puanga and was said to be a daughter of Rehua (Antares), the chief of all stars.[21]

The indigenous Boorong people of northwestern Victoria named Rigel as Collowgullouric Warepil.[22]

Central America

The Lacandon people knew it as tunsel "little woodpecker".[23]

See also

Notes

  1. ^ a b "Define Rigel at Dictionary.com". http://dictionary.reference.com/browse/rigel. Retrieved 6 February 2012. 
  2. ^ a b c d e f van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics 474 (2): 653–664. arXiv:0708.1752. Bibcode 2007A&A...474..653V. doi:10.1051/0004-6361:20078357. 
  3. ^ a b c Nicolet, B. (1978). "Photoelectric photometric Catalogue of homogeneous measurements in the UBV System". Astronomy and Astrophysics Supplement Series 34: 1–49. Bibcode 1978A&AS...34....1N. 
  4. ^ a b c d e f g Moravveji, Ehsan; Guinan, Edward F.; Shultz, Matt; Williamson, Michael H.; Moya, Andres (March 2012), "Asteroseismology of the nearby SN-II Progenitor: Rigel. Part I. The MOST High-precision Photometry and Radial Velocity Monitoring", The Astrophysical Journal 747 (1): 108–115, arXiv:1201.0843, Bibcode 2012ApJ...747..108M, doi:10.1088/0004-637X/747/2/108 
  5. ^ a b Rother, Sara (2009). "A time series study of Rigel, a B8Ia supergiant". http://etd.ohiolink.edu/view.cgi?acc_num=toledo1249043423. 
  6. ^ a b c d Moravveji, Ehsan; Moya, Andres; Guinan, Edward F. (April 2012), "Asteroseismology of the nearby SN-II Progenitor: Rigel. Part II. ε-mechanism Triggering Gravity-mode Pulsations?", The Astrophysical Journal 749 (1): 74–84, Bibcode 2012ApJ...749..74M, doi:10.1088/0004-637X/749/1/74 
  7. ^ Wilson, Ralph Elmer (1953). General Catalogue of Stellar Radial Velocities. Washington: Carnegie Institution of Washington. Bibcode 1953QB901.W495...... 
  8. ^ a b c d Przybilla, N. et al. (January 2006). "Quantitative spectroscopy of BA-type supergiants". Astronomy and Astrophysics 445 (3): 1099–1126. arXiv:astro-ph/0509669. Bibcode 2006A&A...445.1099P. doi:10.1051/0004-6361:20053832. 
  9. ^ Zorec, J. et al. (July 2009), "Fundamental parameters of B supergiants from the BCD system. I. Calibration of the (λ_1, D) parameters into Teff", Astronomy and Astrophysics 501 (1): 297–320, Bibcode 2009A&A...501..297Z, doi:10.1051/0004-6361/200811147 
  10. ^ Abt, Helmut A.; Levato, Hugo; Grosso, Monica (July 2002), "Rotational Velocities of B Stars", The Astrophysical Journal 573 (1): 359–365, Bibcode 2002ApJ...573..359A, doi:10.1086/340590 
  11. ^ "SIMBAD Astronomical Database". Results for Rigel. http://simbad.u-strasbg.fr/Simbad. Retrieved 2008-04-10. 
  12. ^ Garrison, R. F. (December 1993), "Anchor Points for the MK System of Spectral Classification", Bulletin of the American Astronomical Society 25: 1319, Bibcode 1993AAS...183.1710G, http://www.astro.utoronto.ca/~garrison/mkstds.html, retrieved 2012-02-04 
  13. ^ Aufdenberg, J. P. et al. (2008), "Limb Darkening: Getting Warmer", The Power of Optical/IR Interferometry 1 (1): 71–82, Bibcode 2008poii.conf...71A, doi:10.1007/978-3-540-74256-2_8 
  14. ^ a b c d e f Jedicke, Peter; Levy, David H. (1992). "Regal Rigel". The New Cosmos. Waukesha: Kalmbach Books. pp. 48–53. 
  15. ^ a b c d e Burnham, Robert, Jr. (1978). Burnham's Celestial Handbook. New York: Dover Publications. p. 1300. 
  16. ^ Kunitzsch, Paul (1986). "The Star Catalogue Commonly Appended to the Alfonsine Tables". Journal for the History of Astronomy 17 (49): 89-98. Bibcode 1986JHA....17...89K. http://adsabs.harvard.edu/full/1986JHA....17...89K. 
  17. ^ Steve Renshaw and Saori Ihara (October 1999). "Yowatashi Boshi; Stars that Pass in the Night". Griffith Observer. http://www2.gol.com/users/stever/orion.htm. Retrieved 25 June 2012. 
  18. ^ "Daijirin" p. 815 ISBN 978-4-385-13902-9
  19. ^ Hōei Nojiri "Shin seiza jyunrei" p. 19 ISBN 978-4-12-204128-8
  20. ^ Mudrooroo (1994). Aboriginal mythology : an A-Z spanning the history of aboriginal mythology from the earliest legends to the present day. London: HarperCollins. p. 142. ISBN 978-1-85538-306-7. 
  21. ^ p. 419, Mythology: Myths, Legends and Fantasies, Janet Parker, Alice Mills, Julie Stanton, Durban, Struik Publishers, 2007.
  22. ^ Hamacher, Duane W.; Frew, David J. (2010). "An Aboriginal Australian Record of the Great Eruption of Eta Carinae". Journal of Astronomical History & Heritage 13 (3): 220–34. http://arxiv.org/ftp/arxiv/papers/1010/1010.4610.pdf. 
  23. ^ Milbrath, Susan (1999). Star Gods of the Maya: Astronomy in Art, Folklore, and Calendars. Austin, Texas: University of Texas Press. p. 39. ISBN 0292752261. http://books.google.com.au/books?id=DgqLplWtGPgC&pg=PA39&dq=betelgeuse+folklore&hl=en&sa=X&ei=GiDYT47AGMSYiAfZv5ylAw&ved=0CDgQ6AEwAA#v=onepage&q=betelgeuse%20folklore&f=false. 

External links

Coordinates: Sky map 05h 14m 32.272s, −08° 12′ 05.91″