Password

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
For other uses, see Password (disambiguation).

A password is a word or string of characters used for user authentication to prove identity or access approval to gain access to a resource (example: an access code is a type of password), which should be kept secret from those not allowed access.

The use of passwords is known to be ancient. Sentries would challenge those wishing to enter an area or approaching it to supply a password or watchword, and would only allow a person or group to pass if they knew the password. In modern times, user names and passwords are commonly used by people during a log in process that controls access to protected computer operating systems, mobile phones, cable TV decoders, automated teller machines (ATMs), etc. A typical computer user has passwords for many purposes: logging into accounts, retrieving e-mail, accessing applications, databases, networks, web sites, and even reading the morning newspaper online.

A log in window for a website requesting a username and a password.

Despite the name, there is no need for passwords to be actual words; indeed passwords which are not actual words may be harder to guess, a desirable property. Some passwords are formed from multiple words and may more accurately be called a passphrase. The term passcode is sometimes used when the secret information is purely numeric, such as the personal identification number (PIN) commonly used for ATM access. Passwords are generally short enough to be easily memorized and typed.

Most organizations specify a password policy that sets requirements for the composition and usage of passwords, typically dictating minimum length, required categories (e.g. upper and lower case, numbers, and special characters), prohibited elements (e.g. own name, date of birth, address, telephone number). Some governments have national authentication frameworks[1] that define requirements for user authentication to government services, including requirements for passwords.

Choosing a secure and memorable password[edit]

The easier a password is for the owner to remember generally means it will be easier for an attacker to guess.[2] However, passwords which are difficult to remember may also reduce the security of a system because (a) users might need to write down or electronically store the password, (b) users will need frequent password resets and (c) users are more likely to re-use the same password. Similarly, the more stringent requirements for password strength, e.g. "have a mix of uppercase and lowercase letters and digits" or "change it monthly", the greater the degree to which users will subvert the system.[3] Others argue longer passwords provide more security (e.g., entropy) than shorter passwords with a wide variety of characters.[4]

In The Memorability and Security of Passwords,[5] Jeff Yan et al. examine the effect of advice given to users about a good choice of password. They found that passwords based on thinking of a phrase and taking the first letter of each word are just as memorable as naively selected passwords, and just as hard to crack as randomly generated passwords. Combining two or more unrelated words is another good method, but a single dictionary word is not. Having a personally designed algorithm for generating obscure passwords is another good method.

However, asking users to remember a password consisting of a "mix of uppercase and lowercase characters" is similar to asking them to remember a sequence of bits: hard to remember, and only a little bit harder to crack (e.g. only 128 times harder to crack for 7-letter passwords, less if the user simply capitalises one of the letters). Asking users to use "both letters and digits" will often lead to easy-to-guess substitutions such as 'E' → '3' and 'I' → '1', substitutions which are well known to attackers. Similarly typing the password one keyboard row higher is a common trick known to attackers.[citation needed]

A method to memorize a complex password is to remember a sentence like 'This year I go to Italy on Friday July 6!' and use the first characters as the actual password. In this case 'TyIgtIoFJ6!'.

In 2013, Google released a list of the most common password types, all of which are considered insecure because they are too easy to guess (especially after researching an individual on social media):[6]

Factors in the security of a password system[edit]

The security of a password-protected system depends on several factors. The overall system must, of course, be designed for sound security, with protection against computer viruses, man-in-the-middle attacks and the like. Physical security issues are also a concern, from deterring shoulder surfing to more sophisticated physical threats such as video cameras and keyboard sniffers. And, of course, passwords should be chosen so that they are hard for an attacker to guess and hard for an attacker to discover using any (and all) of the available automatic attack schemes. See password strength, computer security, and computer insecurity.

Nowadays, it is a common practice for computer systems to hide passwords as they are typed. The purpose of this measure is to avoid bystanders reading the password. However, some argue that this practice may lead to mistakes and stress, encouraging users to choose weak passwords. As an alternative, users should have the option to show or hide passwords as they type them.[7]

Effective access control provisions may force extreme measures on criminals seeking to acquire a password or biometric token.[8] Less extreme measures include extortion, rubber hose cryptanalysis, and side channel attack.

Here are some specific password management issues that must be considered in thinking about, choosing, and handling, a password.

Rate at which an attacker can try guessed passwords[edit]

The rate at which an attacker can submit guessed passwords to the system is a key factor in determining system security. Some systems impose a time-out of several seconds after a small number (e.g., three) of failed password entry attempts. In the absence of other vulnerabilities, such systems can be effectively secure with relatively simple passwords, if they have been well chosen and are not easily guessed.[9]

Many systems store or transmit a cryptographic hash of the password in a manner that makes the hash value accessible to an attacker.[citation needed] When this is done, and it is very common,[by whom?] an attacker can work off-line, rapidly testing candidate passwords against the true password's hash value.

Passwords that are used to generate cryptographic keys (e.g., for disk encryption or Wi-Fi security) can also be subjected to high rate guessing. Lists of common passwords are widely available and can make password attacks very efficient. (See Password cracking.) Security in such situations depends on using passwords or passphrases of adequate complexity, making such an attack computationally infeasible for the attacker. Some systems, such as PGP and Wi-Fi WPA, apply a computation-intensive hash to the password to slow such attacks. See key stretching.

Limits on the number of password guesses[edit]

An alternative to limiting the rate at which an attacker can make guesses on a password is to limit the total number of guesses that can be made. The password can be disabled, requiring a reset, after a small number of consecutive bad guesses (say 5); and the user may be required to change the password after a larger cumulative number of bad guesses (say 30), to prevent an attacker from making an arbitrarily large number of bad guesses by interspersing them between good guesses made by the legitimate password owner. [10] The username associated with the password can be changed to counter a denial of service attack.

Form of stored passwords[edit]

Some computer systems store user passwords as plaintext, against which to compare user log on attempts. If an attacker gains access to such an internal password store, all passwords—and so all user accounts—will be compromised. If some users employ the same password for accounts on different systems, those will be compromised as well.

More secure systems store each password in a cryptographically protected form, so access to the actual password will still be difficult for a snooper who gains internal access to the system, while validation of user access attempts remains possible. The most secure don't store passwords at all, but a one-way derivation, such as a polynomial, modulus, or an advanced hash function.[4] Roger Needham invented the now common approach of storing only a “hashed” form of the plaintext password. When a user types in a password on such a system, the password handling software runs through a cryptographic hash algorithm, and if the hash value generated from the user’s entry matches the hash stored in the password database, the user is permitted access. The hash value is created by applying a cryptographic hash function to a string consisting of the submitted password and, in many implementations, another value known as a salt. A salt prevents attackers from easily building a list of hash values for common passwords and prevents password cracking efforts from scaling across all users.[11] MD5 and SHA1 are frequently used cryptographic hash functions but they are not recommended for password hashing unless they are used as part of a larger construction such as in PBKDF2.[12]

The stored data—sometimes called the "password verifier" or the "password hash"—is often stored in Modular Crypt Format or RFC 2307 hash format, sometimes in the /etc/passwd file or the /etc/shadow file.[13]

If a cryptographic hash function is well designed, it is computationally infeasible to reverse the function to recover a plaintext password. An attacker can, however, use widely available tools to attempt to guess the passwords. These tools work by hashing possible passwords and comparing the result of each guess to the actual password hashes. If the attacker finds a match, they know that their guess is the actual password for the associated user. Password cracking tools can operate by brute force (i.e. trying every possible combination of characters) or by hashing every word from a list; large lists of possible passwords in many languages are widely available on the Internet.[4] The existence of password cracking tools allows attackers to easily recover poorly chosen passwords. In particular, attackers can quickly recover passwords that are short, dictionary words, simple variations on dictionary words or that use easily guessable patterns.[14] A modified version of the DES algorithm was used as the basis for the password hashing algorithm in early Unix systems.[15] The crypt algorithm used a 12-bit salt value so that each user’s hash was unique and iterated the DES algorithm 25 times in order to make the hash function slower, both measures intended to frustrate automated guessing attacks.[15] The user’s password was used as a key to encrypt a fixed value. More recent Unix or Unix like systems (e.g., Linux or the various BSD systems) use more secure password hashing algorithms such as PBKDF2, bcrypt, and scrypt which have large salts and an adjustable cost or number of iterations.[16] A poorly designed hash function can make attacks feasible even if a strong password is chosen. See LM hash for a widely deployed, and insecure, example.[17]

Methods of verifying a password over a network[edit]

Simple transmission of the password[edit]

Passwords are vulnerable to interception (i.e., "snooping") while being transmitted to the authenticating machine or person. If the password is carried as electrical signals on unsecured physical wiring between the user access point and the central system controlling the password database, it is subject to snooping by wiretapping methods. If it is carried as packetized data over the Internet, anyone able to watch the packets containing the logon information can snoop with a very low probability of detection.

Email is sometimes used to distribute passwords but this is generally an insecure method. Since most email is sent as plaintext, a message containing a password is readable without effort during transport by any eavesdropper. Further, the message will be stored as plaintext on at least two computers: the sender's and the recipient's. If it passes through intermediate systems during its travels, it will probably be stored on there as well, at least for some time, and may be copied to backup, cache or history files on any of these systems.

Using client-side encryption will only protect transmission from the mail handling system server to the client machine. Previous or subsequent relays of the email will not be protected and the email will probably be stored on multiple computers, certainly on the originating and receiving computers, most often in cleartext.

Transmission through encrypted channels[edit]

The risk of interception of passwords sent over the Internet can be reduced by, among other approaches, using cryptographic protection. The most widely used is the Transport Layer Security (TLS, previously called SSL) feature built into most current Internet browsers. Most browsers alert the user of a TLS/SSL protected exchange with a server by displaying a closed lock icon, or some other sign, when TLS is in use. There are several other techniques in use; see cryptography.

Hash-based challenge-response methods[edit]

Unfortunately, there is a conflict between stored hashed-passwords and hash-based challenge-response authentication; the latter requires a client to prove to a server that they know what the shared secret (i.e., password) is, and to do this, the server must be able to obtain the shared secret from its stored form. On many systems (including Unix-type systems) doing remote authentication, the shared secret usually becomes the hashed form and has the serious limitation of exposing passwords to offline guessing attacks. In addition, when the hash is used as a shared secret, an attacker does not need the original password to authenticate remotely; they only need the hash.

Zero-knowledge password proofs[edit]

Rather than transmitting a password, or transmitting the hash of the password, password-authenticated key agreement systems can perform a zero-knowledge password proof, which proves knowledge of the password without exposing it.

Moving a step further, augmented systems for password-authenticated key agreement (e.g., AMP, B-SPEKE, PAK-Z, SRP-6) avoid both the conflict and limitation of hash-based methods. An augmented system allows a client to prove knowledge of the password to a server, where the server knows only a (not exactly) hashed password, and where the unhashed password is required to gain access.

Procedures for changing passwords[edit]

Usually, a system must provide a way to change a password, either because a user believes the current password has been (or might have been) compromised, or as a precautionary measure. If a new password is passed to the system in unencrypted form, security can be lost (e.g., via wiretapping) before the new password can even be installed in the password database. And, of course, if the new password is given to a compromised employee, little is gained. Some web sites include the user-selected password in an unencrypted confirmation e-mail message, with the obvious increased vulnerability.

Identity management systems are increasingly used to automate issuance of replacements for lost passwords, a feature called self service password reset. The user's identity is verified by asking questions and comparing the answers to ones previously stored (i.e., when the account was opened).

Some password reset questions ask for personal information that could be found on social media, such as mother's maiden name. As a result, some security experts recommend either making up one's own questions or giving false answers.[18]

Password longevity[edit]

"Password aging" is a feature of some operating systems which forces users to change passwords frequently (e.g., quarterly, monthly or even more often). Such policies usually provoke user protest and foot-dragging at best and hostility at worst. There is often an increase in the people who note down the password and leave it where it can easily be found, as well as helpdesk calls to reset a forgotten password. Users may use simpler passwords or develop variation patterns on a consistent theme to keep their passwords memorable. Because of these issues, there is some debate[19] as to whether password aging is effective. The intended benefit is mainly that a stolen password will be made ineffective if it is reset; however in many cases, particularly with administrative or "root" accounts, once an attacker has gained access, they can make alterations to the operating system that will allow them future access even after the initial password they used expires. (See rootkit.)

The other less-frequently cited, and possibly more valid reason is that in the event of a long brute force attack, the password will be invalid by the time it has been cracked. Specifically, in an environment where it is considered important to know the probability of a fraudulent login in order to accept the risk, one can ensure that the total number of possible passwords multiplied by the time taken to try each one (assuming the greatest conceivable computing resources) is much greater than the password lifetime. However there is no documented evidence that the policy of requiring periodic changes in passwords increases system security.

Password aging may be required because of the nature of IT systems the password allows access to; if personal data is involved the EU Data Protection Directive is in force. Implementing such a policy, however, requires careful consideration of the relevant human factors. Humans memorize by association, so it is impossible to simply replace one memory with another. Two psychological phenomena interfere with password substitution. "Primacy" describes the tendency for an earlier memory to be retained more strongly than a later one. "Interference" is the tendency of two memories with the same association to conflict. Because of these effects most users must resort to a simple password containing a number that can be incremented each time the password is changed.

Number of users per password[edit]

Sometimes a single password controls access to a device, for example, for a network router, or password-protected mobile phone. However, in the case of a computer system, a password is usually stored for each user account, thus making all access traceable (save, of course, in the case of users sharing passwords). A would-be user on most systems must supply a username as well as a password, almost always at account set up time, and periodically thereafter. If the user supplies a password matching the one stored for the supplied username, he or she is permitted further access into the computer system. This is also the case for a cash machine, except that the 'user name' is typically the account number stored on the bank customer's card, and the PIN is usually quite short (4 to 6 digits).

Allotting separate passwords to each user of a system is preferable to having a single password shared by legitimate users of the system, certainly from a security viewpoint. This is partly because users are more willing to tell another person (who may not be authorized) a shared password than one exclusively for their use. Single passwords are also much less convenient to change because many people need to be told at the same time, and they make removal of a particular user's access more difficult, as for instance on graduation or resignation. Per-user passwords are also essential if users are to be held accountable for their activities, such as making financial transactions or viewing medical records.

Password security architecture[edit]

Common techniques used to improve the security of computer systems protected by a password include:

Some of the more stringent policy enforcement measures can pose a risk of alienating users, possibly decreasing security as a result.

Password reuse[edit]

It is common practice amongst computer users to reuse the same password on multiple sites. This presents a substantial security risk, since an attacker need only compromise a single site in order to gain access to other sites the victim uses. This problem is exacerbated by also reusing usernames, and by websites requiring email logins, as it makes it easier for an attacker to track a single user across multiple sites. Password reuse can be avoided or minimused by using mnemonic techniques, writing passwords down on paper, or using a password manager.[24]

It has been argued by Redmond researchers Dinei Florencio and Cormac Herley, together with Paul C. van Oorschot of Carleton University, Canada, that password reuse is inevitable, and that users should reuse passwords for low-security websites (which contain little personal data and no financial information, for example) and instead focus their efforts on remember long, complex passwords for a few important accounts, such as banks accounts.[25]

Writing down passwords on paper[edit]

Historically, many security experts asked people to memorize their passwords: "Never write down a password". More recently, many security experts such as Bruce Schneier recommend that people use passwords that are too complicated to memorize, write them down on paper, and keep them in a wallet.[26][27][28][29][30][31][32]

Password manager software can also store passwords relatively safely, in an encrypted file sealed with a single password.

After death[edit]

According to a survey by the University of London, one in ten people are now leaving their passwords in their wills to pass on this important information when they die. One third of people, according to the poll, agree that their password protected data is important enough to pass on in their will.[33]

Password cracking[edit]

Main article: Password cracking

Attempting to crack passwords by trying as many possibilities as time and money permit is a brute force attack. A related method, rather more efficient in most cases, is a dictionary attack. In a dictionary attack, all words in one or more dictionaries are tested. Lists of common passwords are also typically tested.

Password strength is the likelihood that a password cannot be guessed or discovered, and varies with the attack algorithm used. Cryptologists and computer scientists often refer to the strength or 'hardness' in terms of entropy.[4]

Passwords easily discovered are termed weak or vulnerable; passwords very difficult or impossible to discover are considered strong. There are several programs available for password attack (or even auditing and recovery by systems personnel) such as L0phtCrack, John the Ripper, and Cain; some of which use password design vulnerabilities (as found in the Microsoft LANManager system) to increase efficiency. These programs are sometimes used by system administrators to detect weak passwords proposed by users.

Studies of production computer systems have consistently shown that a large fraction of all user-chosen passwords are readily guessed automatically. For example, Columbia University found 22% of user passwords could be recovered with little effort.[34] According to Bruce Schneier, examining data from a 2006 phishing attack, 55% of MySpace passwords would be crackable in 8 hours using a commercially available Password Recovery Toolkit capable of testing 200,000 passwords per second in 2006.[35] He also reported that the single most common password was password1, confirming yet again the general lack of informed care in choosing passwords among users. (He nevertheless maintained, based on these data, that the general quality of passwords has improved over the years—for example, average length was up to eight characters from under seven in previous surveys, and less than 4% were dictionary words.[36])

Incidents[edit]

Alternatives to passwords for authentication[edit]

The numerous ways in which permanent or semi-permanent passwords can be compromised has prompted the development of other techniques. Unfortunately, some are inadequate in practice, and in any case few have become universally available for users seeking a more secure alternative.[citation needed]

Website password systems[edit]

Passwords are used on websites to authenticate users and are usually maintained on the Web server, meaning the browser on a remote system sends a password to the server (by HTTP POST), the server checks the password and sends back the relevant content (or an access denied message). This process eliminates the possibility of local reverse engineering as the code used to authenticate the password does not reside on the local machine.

Transmission of the password, via the browser, in plaintext means it can be intercepted along its journey to the server. Many web authentication systems use SSL to establish an encrypted session between the browser and the server, and is usually the underlying meaning of claims to have a "secure Web site". This is done automatically by the browser and increases integrity of the session, assuming neither end has been compromised and that the SSL/TLS implementations used are high quality ones.

History of passwords[edit]

Passwords or watchwords have been used since ancient times. Polybius describes the system for the distribution of watchwords in the Roman military as follows:

The way in which they secure the passing round of the watchword for the night is as follows: from the tenth maniple of each class of infantry and cavalry, the maniple which is encamped at the lower end of the street, a man is chosen who is relieved from guard duty, and he attends every day at sunset at the tent of the tribune, and receiving from him the watchword — that is a wooden tablet with the word inscribed on it – takes his leave, and on returning to his quarters passes on the watchword and tablet before witnesses to the commander of the next maniple, who in turn passes it to the one next him. All do the same until it reaches the first maniples, those encamped near the tents of the tribunes. These latter are obliged to deliver the tablet to the tribunes before dark. So that if all those issued are returned, the tribune knows that the watchword has been given to all the maniples, and has passed through all on its way back to him. If any one of them is missing, he makes inquiry at once, as he knows by the marks from what quarter the tablet has not returned, and whoever is responsible for the stoppage meets with the punishment he merits.[51]

Passwords in military use evolved to include not just a password, but a password and a counterpassword; for example in the opening days of the Battle of Normandy, paratroopers of the U.S. 101st Airborne Division used a password — flash — which was presented as a challenge, and answered with the correct response — thunder. The challenge and response were changed every three days. American paratroopers also famously used a device known as a "cricket" on D-Day in place of a password system as a temporarily unique method of identification; one metallic click given by the device in lieu of a password was to be met by two clicks in reply.[52]

Passwords have been used with computers since the earliest days of computing. MIT's CTSS, one of the first time sharing systems, was introduced in 1961. It had a LOGIN command that requested a user password. "After typing PASSWORD, the system turns off the printing mechanism, if possible, so that the user may type in his password with privacy."[53] In the early 1970s, Robert Morris invented the idea of storing login passwords in a hashed form as part of the Unix operating system. The system was based on a simulated Hagelin rotor crypto machine, and first appeared in 6th Edition Unix in 1974. A later version of his algorithm, known as crypt(3), used a 12-bit salt and invoked a modified form of the DES algorithm 25 times to reduce the risk of pre-computed dictionary attacks.[54]

See also[edit]

References[edit]

  1. ^ Improving Usability of Password Management with Standardized Password Policies. Retrieved on 2012-10-12.
  2. ^ Vance, Ashlee (2010-01-10). "If Your Password Is 123456, Just Make It HackMe". The New York Times. 
  3. ^ Managing Network Security at the Wayback Machine (archived March 2, 2008). Fred Cohen and Associates. All.net. Retrieved on 2012-05-20.
  4. ^ a b c d Lundin, Leigh (2013-08-11). "PINs and Passwords, Part 2". Passwords. Orlando: SleuthSayers. 
  5. ^ The Memorability and Security of Passwords. ncl.ac.uk. Retrieved on 2012-05-20.
  6. ^ By Techlicious / Fox Van Allen @techlicious (2013-08-08). "Google Reveals the 10 Worst Password Ideas | TIME.com". Techland.time.com. Retrieved 2013-10-16. 
  7. ^ Lyquix Blog: Do We Need to Hide Passwords?. Lyquix.com. Retrieved on 2012-05-20.
  8. ^ Jonathan Kent Malaysia car thieves steal finger. BBC (2005-03-31)
  9. ^ Stuart Brown Top ten passwords used in the United Kingdom at the Wayback Machine (archived June 15, 2006). Modernlifeisrubbish.co.uk (2006-05-26). Retrieved on 2012-05-20.
  10. ^ US patent 8046827 
  11. ^ The Bug Charmer: Passwords Matter. Bugcharmer.blogspot.com (2012-06-20). Retrieved on 2013-07-30.
  12. ^ a b Alexander, Steven. (2012-06-20) The Bug Charmer: How long should passwords be?. Bugcharmer.blogspot.com. Retrieved on 2013-07-30.
  13. ^ "passlib.hash - Password Hashing Schemes".
  14. ^ Cracking Story – How I Cracked Over 122 Million SHA1 and MD5 Hashed Passwords « Thireus' Bl0g. Blog.thireus.com (2012-08-29). Retrieved on 2013-07-30.
  15. ^ a b Morris, Robert and Thompson, Ken (1979). "Password Security: A Case History". Communications of the ACM 22 (11): 594–597. doi:10.1145/359168.359172. 
  16. ^ Password Protection for Modern Operating Systems. Usenix.org. Retrieved on 2012-05-20.
  17. ^ How to prevent Windows from storing a LAN manager hash of your password in Active Directory and local SAM databases. support.microsoft.com (2007-12-03). Retrieved on 2012-05-20.
  18. ^ "Why You Should Lie When Setting Up Password Security Questions". Techlicious. 2013-03-08. Retrieved 2013-10-16. 
  19. ^ Schneier on Security discussion on changing passwords. Schneier.com. Retrieved on 2012-05-20.
  20. ^ Seltzer, Larry. (2010-02-09) "American Express: Strong Credit, Weak Passwords". Pcmag.com. Retrieved on 2012-05-20.
  21. ^ "Ten Windows Password Myths": "NT dialog boxes ... limited passwords to a maximum of 14 characters"
  22. ^ "You must provide a password between 1 and 8 characters in length". Jira.codehaus.org. Retrieved on 2012-05-20.
  23. ^ "To Capitalize or Not to Capitalize?". World.std.com. Retrieved on 2012-05-20.
  24. ^ Thomas, Keir (February 10, 2011). "Password Reuse Is All Too Common, Research Shows". PC World. Retrieved August 10, 2014. 
  25. ^ Pauli, Darren (16 July 2014). "Microsoft: You NEED bad passwords and should re-use them a lot". The Register. Retrieved 10 August 2014. 
  26. ^ Bruce Schneier : Crypto-Gram Newsletter May 15, 2001
  27. ^ "Ten Windows Password Myths": Myth #7. You Should Never Write Down Your Password
  28. ^ Kotadia, Munir (2005-05-23) Microsoft security guru: Jot down your passwords. News.cnet.com. Retrieved on 2012-05-20.
  29. ^ "The Strong Password Dilemma" by Richard E. Smith: "we can summarize classical password selection rules as follows: The password must be impossible to remember and never written down."
  30. ^ "Choosing Random Passwords" by Bob Jenkins
  31. ^ "The Memorability and Security of Passwords – Some Empirical Results"
    "your password ... in a secure place, such as the back of your wallet or purse."
  32. ^ "Should I write down my passphrase?". World.std.com. Retrieved on 2012-05-20.
  33. ^ Jaffery, Saman M. (17 October 2011). "Survey: 11% of Brits Include Internet Passwords in Will". Hull & Hull LLP. Retrieved 16 July 2012. 
  34. ^ Password at the Wayback Machine (archived April 23, 2007). cs.columbia.edu
  35. ^ Schneier, Real-World Passwords. Schneier.com. Retrieved on 2012-05-20.
  36. ^ MySpace Passwords Aren't So Dumb. Wired.com (2006-10-27). Retrieved on 2012-05-20.
  37. ^ "CERT IN-98.03". 1998-07-16. Retrieved 2009-09-09. 
  38. ^ "Consumer Password Worst Practices". 
  39. ^ "NATO site hacked". The Register. 2011-06-24. Retrieved July 24, 2011. 
  40. ^ "Anonymous Leaks 90,000 Military Email Accounts in Latest Antisec Attack". 2011-07-11. 
  41. ^ "Military Password Analysis". 2011-07-12. 
  42. ^ Cryptology ePrint Archive: Report 2005/434. eprint.iacr.org. Retrieved on 2012-05-20.
  43. ^ T Matsumoto. H Matsumotot, K Yamada, and S Hoshino (2002). "Impact of artificial 'Gummy' Fingers on Fingerprint Systems". Proc SPIE 4677: 275. doi:10.1117/12.462719. 
  44. ^ Using AJAX for Image Passwords – AJAX Security Part 1 of 3. waelchatila.com (2005-09-18). Retrieved on 2012-05-20.
  45. ^ Butler, Rick A. (2004-12-21) Face in the Crowd. mcpmag.com. Retrieved on 2012-05-20.
  46. ^ graphical password or graphical user authentication (GUA). searchsecurity.techtarget.com. Retrieved on 2012-05-20.
  47. ^ Ericka Chickowski (2010-11-03). "Images Could Change the Authentication Picture". Dark Reading. 
  48. ^ "Confident Technologies Delivers Image-Based, Multifactor Authentication to Strengthen Passwords on Public-Facing Websites". 2010-10-28. 
  49. ^ User Manual for 2-Dimensional Key (2D Key) Input Method and System. xpreeli.com. (2008-09-08) . Retrieved on 2012-05-20.
  50. ^ Kok-Wah Lee "Methods and Systems to Create Big Memorizable Secrets and Their Applications" Patent US20110055585, WO2010010430. Filing date: December 18, 2008
  51. ^ Polybius on the Roman Military. Ancienthistory.about.com (2012-04-13). Retrieved on 2012-05-20.
  52. ^ Mark Bando (2007). 101st Airborne: The Screaming Eagles in World War II. Mbi Publishing Company. ISBN 978-0-7603-2984-9. Retrieved 20 May 2012. 
  53. ^ CTSS Programmers Guide, 2nd Ed., MIT Press, 1965
  54. ^ Morris, Robert; Thompson, Ken (1978-04-03). "Password Security: A Case History.". Bell Laboratories. Retrieved 2011-05-09. 

External links[edit]