Pancreatic cancer

From Wikipedia, the free encyclopedia - View original article

Pancreatic cancer
Classification and external resources
Illu pancrease.svg
Jump to: navigation, search
Pancreatic cancer
Classification and external resources
Illu pancrease.svg

Pancreatic cancer occurs when cancer cells develop from the pancreas, a glandular organ located behind the stomach. Signs and symptoms of pancreatic cancer may include abdominal or back pain, yellow skin, unexplained weight loss, light colored stools, dark urine and loss of appetite. Early on there are usually no symptoms.[1] Symptoms that are specific enough to suspect pancreatic cancer often do not appear until the disease is already in an advanced stage.[1] By the time of diagnosis the cancer has usually spread to other parts of the body.[2]

Risk factors include: smoking, obesity, diabetes, and certain rare genetic conditions including: multiple endocrine neoplasia type 1 and hereditary nonpolyposis colon cancer among others.[1] Smoking is the cause of about 20% of cases while 10% of cases are linked to inherited genes. Infiltrating ductal adenocarcinoma is the most common type of pancreatic cancer, making up 90% of cases, and references to pancreatic cancer often refer only to that type. It arises within the part of the pancreas that makes digestive enzymes, known as the exocrine pancreas. One to two percent arise from islet cells, and are classified as neuroendocrine tumors. There are also a number of other types of pancreatic cancer.[2] Diagnosis is usually based on a combination of imaging tests such as ultrasound and computed tomography, blood tests such as CEA and CA 19-9 and biopsy. This allows the disease to be divided into five stages.[1]

The most important form of prevention is to cease smoking, after which the risk of the disease returns to normal within 20 years.[2] Other recommendations include limiting alcohol intake and eating a healthy diet.[3] Screening the general population has not been found to be effective.[3] For people affected by the disease treatments may include: surgery, radiation therapy, chemotherapy, or a combination of treatments. Recommendations are partly based on the cancer stage. Surgery may be done in an effort to cure the disease or to try to improve quality of life without trying to cure. Pain management and medications to improve digestion are sometimes needed.[1] Early palliative care is recommended even in those who are receiving active treatment.[4][5]

In 2012 pancreatic cancer caused 330,000 deaths globally, the seventh most common cause of deaths due to cancer.[2] In the United States it is the fourth most common cause of deaths due to cancer.[6] The disease occurs more often in the developed world, where 68% of new cases occur in 2012.[2] It often has poor outcomes with the average percentage alive for at least one and five years being 25% and 5% respectively.[2][7] In localized disease where the cancer is small (< 2 cm) the number alive at five years is approximately 20%.[8] For those with neuroendocrine cancer the number alive at five years is better at 65%.[2] In the United States, as of 2006, the economic costs of pancreatic cancer are estimated at $8.6 billion.[9]

Signs and symptoms[edit]

Drawing of the pancreas
The pancreas: 1. pancreatic head; 4. pancreatic body; 11. pancreatic tail

Early pancreatic cancer usually does not cause symptoms, so that the disease is typically not diagnosed until it has spread beyond the pancreas itself.[10] This is one of the key factors in the poor survival rate.

Common symptoms before diagnosis include:

Other symptoms[edit]

Risk factors[edit]

Risk factors for pancreatic cancer include:[2] [12][13][21][22]


It is controversial whether alcohol consumption is a risk factor for pancreatic cancer. Overall, the association is consistently weak and the majority of studies have found no association.[35][36][37] Although drinking alcohol excessively is a major cause of chronic pancreatitis, which in turn predisposes to pancreatic cancer, chronic pancreatitis associated with alcohol consumption is less frequently a precursor for pancreatic cancer than other types of chronic pancreatitis.[38]

Some studies suggest a relationship,[39] the risk increasing with increasing amount of alcohol intake.[40][41] The risk is greatest in heavy drinkers,[42][43][44] mostly on the order of four or more drinks per day.[45] There appears to be no increased risk for people consuming up to 30g of alcohol a day,[37][46][47] which is approximately 2 alcoholic beverages/day,[47] so most people who take alcohol do so at a level that "is probably not a risk factor for pancreatic cancer".[44] A pooled analysis concluded, "Our findings are consistent with a modest increase in risk of pancreatic cancer with consumption of 30 or more grams of alcohol per day".[47]

Several studies caution that their findings could be due to confounding factors.[43][48] Even if a link exists, it "could be due to the contents of some alcoholic beverages"[49] other than the alcohol itself. One Dutch study even found that drinkers of white wine had lower risk.[50]


Axial CT image with i.v. contrast. Macrocystic adenocarcinoma of the pancreatic head.

Most patients with pancreatic cancer experience pain, weight loss, or jaundice.[51]

Pain is present in 80% to 85% of patients with locally advanced or advanced metastatic disease. The pain is usually felt in the upper abdomen as a dull ache that radiates straight through to the back. It may be intermittent and made worse by eating. Weight loss can be profound; it can be associated with anorexia, early satiety, diarrhoea, or steatorrhea. Jaundice is often accompanied by pruritus and dark urine. Painful jaundice is present in approximately one-half of patients with locally unresectable disease, while painless jaundice is present in approximately one-half of patients with a potentially resectable and curable lesion.

The initial presentation varies according to location of the cancer. Malignancies in the pancreatic body or tail usually present with pain and weight loss, while those in the head of the gland typically present with steatorrhea, weight loss, and jaundice. The recent onset of atypical diabetes mellitus, a history of recent but unexplained thrombophlebitis (Trousseau sign), or a previous attack of pancreatitis are sometimes noted. Courvoisier sign defines the presence of jaundice and a painlessly distended gallbladder as strongly indicative of pancreatic cancer, and may be used to distinguish pancreatic cancer from gallstones. Tiredness, irritability and difficulty eating because of pain also exist. Pancreatic cancer is often discovered during the course of the evaluation of aforementioned symptoms.

Liver function tests can show a combination of results indicative of bile duct obstruction (raised conjugated bilirubin, γ-glutamyl transpeptidase and alkaline phosphatase levels). CA19-9 (carbohydrate antigen 19.9) is a tumor marker that is frequently elevated in pancreatic cancer. However, it lacks sensitivity and specificity. When a cutoff above 37 U/mL is used, this marker has a sensitivity of 77% and specificity of 87% in discerning benign from malignant disease. CA 19-9 might be normal early in the course, and could be elevated because of benign causes of biliary obstruction.[52] Imaging studies, such as computed tomography (CT scan) and endoscopic ultrasound (EUS) can be used to identify the location and form of the cancer. The definitive diagnosis is made by an endoscopic needle biopsy or surgical excision of the radiologically suspicious tissue. Endoscopic ultrasound is often used to visually guide the needle biopsy procedure.[53] Nonetheless, pancreatic cancer is usually staged using a CT scan. In fact, a histologic diagnosis is not usually required for resection of the tumor, rather histologic analysis helps determine which chemotherapeutic regimen to start.[54]


The cancer staging system used internationally for pancreatic cancer is that of the American Joint Committee on Cancer and Union for International Cancer Control, so AJCC-UICC, which makes an important distinction within Stage II, between tumors that are classed as "borderline resectable" because they do not involve the celiac axis or superior mesenteric artery, and "unresectable". Surgery is likely to be possible for the former, but is not for the latter. These are T3 and T4 respectively in the associated TNM staging system.[55]


Micrograph of pancreatic ductal adenocarcinoma (the most common type of pancreatic cancer). H&E stain.

The development of pancreatic cancer may involve the over-expression of oncogenes, inactivation of tumor suppressor genes or the deregulation of various signaling proteins.[56] Mutations leading to carcinoma may be accelerated by genetic or environmental factors and other risk factors already described. Specific mutations vary among and even within the cyto-histologic categories discussed below.

Exocrine pancreas cancers[edit]

Micrographs of normal pancreas, pancreatic intraepithelial neoplasia (precursors to pancreatic carcinoma) and pancreatic carcinoma. H&E stain.

The most common form of pancreatic cancer (ductal adenocarcinoma) is typically characterized by moderately to poorly differentiated glandular structures on microscopic examination. Pancreatic cancer has an immunohistochemical profile that is similar to hepatobiliary cancers (e.g. cholangiocarcinoma) and some stomach cancers; thus, it may not always be possible to be certain that a tumour found in the pancreas arose from it.

The genetic events that cause ductal adenocarcinoma have been well characterized. The most common are KRAS mutations (96%), CDKN2A mutations/deletions (75%), TP53 mutations (55%), SMAD4 deletions/mutations (50%), and SWI/SNF mutations/deletions (35%).[57][58]

Cross section of a human liver, taken at autopsy examination, showing multiple large pale tumor deposits. The tumor is an adenocarcinoma derived from a primary lesion in the body of the pancreas.

Pancreatic carcinoma is thought to arise from progressive tissue changes. Three types of precancerous lesion are recognized: pancreatic intraepithelial neoplasia – a microscopic lesions of the pancreas, intraductal papillary mucinous neoplasms and mucinous cystic neoplasms both of which are macroscopic lesions.[59] The cellular origin of these lesions is debated.

Acinar cell carcinoma of the pancreas represents 5% of exocrine pancreas cancers. Cystadenocarcinoma represents 1% and has a better prognosis than other types.[60] Other exocrine cancers include adenosquamous carcinomas, signet ring cell carcinomas, hepatoid carcinomas, colloid carcinomas, undifferentiated carcinomas, and undifferentiated carcinomas with osteoclast-like giant cells.[61]

Pancreatoblastoma is a rare form, mostly occurring in childhood, and with a relatively good prognosis.

Pancreatic mucinous cystic neoplasms are a broad group of pancreas tumors that have varying malignant potential. They are being detected at a greatly increased rate as CT scans become more powerful and common, and discussion continues as how best to assess and treat them, as many are benign.[62]

Pancreatic neuroendocrine tumors[edit]

Main article: Neuroendocrine tumor

Endocrine pancreatic tumors have been variously called islet cell tumors, pancreas endocrine tumors (PETs), and pancreatic neuroendocrine tumors (PNETs).[63] The annual clinically recognized incidence is low, about five per one million person-years.[61] However, autopsy studies incidentally identify PETs in up to 1.5%[64] most of which would remain inert and asymptomatic.[64]

The majority of PNETs are usually categorized as benign[65][66][67] but the definition of malignancy in pancreas endocrine tumors has been ambiguous. A small subset of endocrine pancreatic tumors are incontrovertible pancreatic endocrine cancers, that make up about 1% of pancreas cancers.[61][63] Low- to intermediate-grade neuroendocrine carcinomas of the pancreas may be called islet cell tumors. Some sources have also termed these pancreatic carcinoid,[63] a practice that has sometimes been strongly condemned.[citation needed] Definitional migration has caused some complexity of PNET classification,[63] which has adversely affected what is known about the epidemiology and natural history of these tumors.[63] It is probable that some of these tumors have been included in ICD-O-3 histology classifications 8240–8245, in that they were labeled pancreatic carcinoid tumours[63][68] but most islet cell carcinomas have been coded as ICD-O-3 system 8150–8155.[63]

The more aggressive endocrine pancreatic cancers are known as pancreatic neuroendocrine carcinomas (PNEC). Similarly, there has likely been a degree of admixture of PNEC and extrapulmonary small cell carcinoma.[citation needed]


According to the American Cancer Society, there are no established guidelines for preventing pancreatic cancer, although cigarette smoking has been reported as responsible for 20–30% of cases.[69][better source needed][dated info]

The ACS recommends keeping a healthy weight, and increasing consumption of fruits, vegetables, and whole grains, while decreasing red meat intake, although there is no consistent evidence this will prevent or reduce pancreatic cancer specifically.[70][71] In 2006, a large prospective cohort study of over 80,000 subjects failed to prove a definite association.[72] The evidence in support of this lies mostly in small case-control studies.[29]

A long-term study found that people who consumed in the range of 300 to 449 international units (IU) of vitamin D daily had a 43% lower risk of pancreatic cancer than those who took less than 150 IU per day;[73][74] 150 IU is appreciably less than what was then, or is now, recommended.[75] The World Health Organization (WHO) International Agency for Research on Cancer (IARC) concluded that there were insufficient studies in pancreatic cancer. Furthermore, while the IARC found evidence for an inverse association between vitamin D and colorectal cancer to be persuasive, it found evidence for a causal link to be limited, and also found that randomized controlled trials (RCTs) were inconclusive.[76] Taking too much vitamin D may be harmful.[75] Poor general diet, obesity, and relative physical inactivity can be risk factors in some cancers, so the role of vitamin D itself is not certain.[77]

A Harvard study from 2007 showed a modest inverse trend between blood circulation of B vitamins, such as B12, B6, and folate and pancreatic cancer incidence, but not when the vitamins were ingested in tablet form.[78] However, the results of a meta-analysis of randomized trials by Rothwell and colleagues indicate that taking a daily low-dose aspirin regimen for more than five years decreases the risk of developing pancreatic adenocarcinoma (ductal pancreatic cancer) by 75%.[79]


It is generally agreed that general screening of large groups is not at present likely to be effective, and outside clinical trials there are no programmes for this. The European Society for Medical Oncology recommends regular screening with endoscopic ultrasound and MRI/CT imaging for those at high risk from inherited genetics,[80] in line with other recommendations,[10][81] which may also include CT.[81]


Exocrine cancer[edit]

The first and most crucial clinical decision to be made after diagnosis is whether surgical removal of the tumor is possible, as only this offers hope of a cure. This will require a tumor that has not metastasized, and will then depend on the location and spread of the tumor. In particular the tumor will be examined through CT to see how it relates to the major blood vessels passing close to the pancreas. An abutment of the tumor, defined as the tumor touching up to 180° of a blood vessel's circumference, may be operable, but encasement, defined as more 180° engaged, is not. The general health of the patient must also be assessed, though age in itself is not an obstacle to surgery.[82]

Chemotherapy and, to a lesser extent, radiotherapy, are likely to be offered to most patients, whether or not surgery is possible. Management of pancreatic cancer should be in the hands of a multidisciplinary team including specialists in several aspects of oncology, and is therefore best conducted in larger centers.[83]


Treatment of pancreatic cancer depends on the stage of the cancer.[84] Although only localized cancer is considered suitable for surgery with curative intent at present, only 20% of cases present with localized disease at diagnosis.[85] Surgery can also be performed for palliation, if the malignancy is invading or compressing the duodenum or colon. In such cases, bypass surgery might overcome the obstruction and improve quality of life but is not intended as a cure.[53]

The Whipple procedure is the most common attempted curative surgical treatment for cancers involving the head of the pancreas. This procedure involves removing the pancreatic head and the curve of the duodenum together (pancreato-duodenectomy), making a bypass for food from stomach to jejunum (gastro-jejunostomy) and attaching a loop of jejunum to the cystic duct to drain bile (cholecysto-jejunostomy). It can be performed only if the patient is likely to survive major surgery and if the cancer is localized without invading local structures or metastasizing. It can, therefore, be performed in only the minority of cases.

Cancers of the tail of the pancreas can be resected using a procedure known as a distal pancreatectomy.[84] Recently, localized cancers of the pancreas have been resected using minimally invasive (laparoscopic) approaches.[86]

After surgery, adjuvant chemotherapy with gemcitabine or 5-FU should be offered if the patient is fit after surgery.[87] There has been controversy as to whether it is beneficial to add radiotherapy since the 1980s,[88] and ESMO recommend that this should only be used for patients in clinical trials.[87] However it is more likely to be used in the USA.[10]

Those with inoperable pancreatic cancer may have significant abdominal pain. A celiac plexus block (CPB), which destroys the nerves that transmit pain from the abdomen, is a safe and effective way to reduce the pain. CPB generally reduces the need to use pain killers like opioids, which have significant negative side effects.[89]


Principles of radiation therapy in pancreas adenocarcinoma are reviewed extensively in guidelines by the National Comprehensive Cancer Network.[90] Radiation can be considered in several situations. One situation is the addition of radiation therapy after potentially curative surgery. Groups in the US have been more apt to use adjuvant radiation therapy than groups in Europe.[91]


In people not suitable for resection with curative intent, palliative chemotherapy may be used to improve quality of life and gain a modest survival benefit. Gemcitabine was approved by the United States Food and Drug Administration in 1997,[92] after a clinical trial reported improvements in quality of life and a 5-week improvement in median survival duration in patients with advanced pancreatic cancer. This marked the first FDA approval of a chemotherapy drug primarily for a nonsurvival clinical trial endpoint. Gemcitabine is administered intravenously on a weekly basis.

Chemotherapy using gemcitabine alone was the standard for the years following, as a number of trials testing it in varying dosage regimes and in combination with other drugs failed to demonstrate significantly better outcomes. However the combination of gemcitabine with Erlotinib was found to increase survival, and Erlotinib was licensed by the FDA for use in pancreatic cancer. The FOLFIRINOX chemotherapy regimen using four drugs was found more effective than gemcitabine, but with serious side effects, and thus only suitable for patients with good performance status. This is also true of protein-bound paclitaxel or nab-paclitaxel, which was licensed by the FDA in 2013 for this purpose. By the end of 2013, both FOLFIRINOX and nab-paclitaxel were regarded as good choices for those patients who were able to withstand the side-effects, with gemcitabine remaining an option for those who were not. A head to head trial between the two new options is awaited, and trials investigating other variations continue. However, the changes of the last few years have only increased average survival times by a few months.[92]

Neuroendocrine tumors[edit]

Main article: Neuroendocrine tumor

The majority of these tumors are histologically benign. Treatment of pancreatic endocrine tumors, including the less common malignant tumors, may include:

Palliative care[edit]

Palliative care is medical care which focuses on treatment of symptoms from serious illness, like cancer, and improving quality of life.[93] Because pancreatic cancer is one of the most aggressive cancers, the cancer is usually diagnosed after it has progressed to an advanced stage, and there are fewer treatment options compared to other cancers, life expectancy of less than one year is expected in 80-90% of patients, in which case many of these patients would benefit from palliative care as a treatment of symptoms.[94]

Palliative care will focus not on treating the underlying cancer, but on treating symptoms such as pain or nausea, and can assist in decision making such as when or if hospice care will be beneficial.[95] Pain can be managed with medications such as opioids or through procedural intervention such as celiac plexus blocks, which alters the nerves that may be causing pain. Other symptoms/complications that can be treated with palliative surgery are biliary or intestinal obstruction. Palliative care can also help treat depression that often comes with diagnosis of pancreatic cancer, as well as fatigue and cachexia.[96]


Exocrine pancreatic cancer (adenocarcinoma and less common variants) typically has a poor prognosis, partly because the cancer usually causes no symptoms early on, leading to locally advanced or metastatic disease at time of diagnosis.

Pancreatic cancer may occasionally result in diabetes. Insulin production is hampered, and it has been suggested the cancer can also prompt the onset of diabetes and vice versa.[97] It can be associated with pain, fatigue, weight loss, jaundice, and weakness. Additional symptoms are discussed above.

For pancreatic cancer:

Outcomes with pancreatic endocrine tumors, many of which are benign and completely without clinical symptoms, are much better, as are outcomes with symptomatic benign tumors; even with actual pancreatic endocrine cancers, outcomes are rather better, but variable.[63][99][100]


Age-standardized death from pancreatic cancer per 100,000 inhabitants in 2004.[101]
  no data

Globally, as of 2012, pancreatic cancer resulted in 330,000 deaths,[2] up from 310,000 in 2010 and 200,000 in 1990.[102] In 2010, an estimated 43,000 people in the US were diagnosed with pancreas cancer[7] and almost 37,000 died from the disease.[7] Pancreatic cancer has one of the highest fatality rates of all cancers, and is the fourth-highest cancer killer among both men and women worldwide.[103] Although it accounts for only 2.5% of new cases, pancreatic cancer is responsible for 6% of cancer deaths each year.[104]


Worldwide efforts are under way to understand pancreatic cancer on many levels,[105][106] and there are several fundamental unanswered questions. Research on pancreatic cancer has been recognized[107] as an area in need of prioritization due to limited progress over recent decades.

The nature of the genetic changes that lead to the disease are being intensely scrutinized, for example by the Australian Pancreatic Genome Initiative[108] as part of the International Cancer Genome Consortium. These and others have uncovered[109] the key role played by genes such as KRAS and p53 in the disease’s development. A key question is the timing of key events in the disease’s progression – particularly how and when it spreads (metastasizes), and how these are affected by lifestyle risk factors such as obesity and smoking.

Research on early detection is ongoing, for example the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer (EUROPAC)[110] trial is aiming to determine whether regular screening is appropriate for people with a family history of the disease, or who have hereditary pancreatitis.

Parallel to this, efforts are underway to develop new drugs to target the disease, or to test existing drugs that are currently not used to treat it. Some of these involve treatments to target cancer cells themselves using targeted therapies.[111] Others aim to target the tissue surrounding the pancreatic tumour (the Stroma (animal tissue) or microenvironment).[112] The availability of new genetically engineered mouse models has substantially advanced this research in recent years.[113] A third key strand of research on treating the disease is immunotherapy – particularly using oncolytic viruses.[114]

Another key area of interest is in assessing whether keyhole surgery (laparoscopy) would be better than Whipple’s Procedure (pancreaticoduodenectomy) in treating the disease surgically,[115] particularly in terms of recovery time.

See also[edit]


  1. ^ a b c d e "Pancreatic Cancer Treatment (PDQ®) Patient Version". National Cancer Institute. 2014-04-17. Retrieved 8 June 2014. 
  2. ^ a b c d e f g h i j k l World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 5.7. ISBN 9283204298. 
  3. ^ a b Bussom S, Saif MW (5 Mar 2010). "Methods and rationale for the early detection of pancreatic cancer. Highlights from the "2010 ASCO Gastrointestinal Cancers Symposium". Orlando, FL, USA. January 22-24, 2010.". JOP : Journal of the pancreas 11 (2): 128–30. PMID 20208319. 
  4. ^ Shahrokni A, Saif MW (10 July 2013). "Metastatic pancreatic cancer: the dilemma of quality vs. quantity of life.". JOP : Journal of the pancreas 14 (4): 391–4. PMID 23846935. 
  5. ^ Bardou M, Le Ray I (December 2013). "Treatment of pancreatic cancer: A narrative review of cost-effectiveness studies.". Best practice & research. Clinical gastroenterology 27 (6): 881–92. doi:10.1016/j.bpg.2013.09.006. PMID 24182608. 
  6. ^ Hariharan D, Saied A, Kocher HM (2008). "Analysis of mortality rates for pancreatic cancer across the world". HPB 10 (1): 58–62. doi:10.1080/13651820701883148. PMC 2504856. PMID 18695761. 
  7. ^ a b c d e "American Cancer Society: Cancer Facts & Figures 2010: see page 4 for incidence estimates, and page 19 for survival percentages". 
  8. ^ a b c "Pancreatic Cancer Treatment (PDQ®) Health Professional Version". NCI. 2014-02-21. Retrieved 8 June 2014. 
  9. ^ Hardison, Brooke Layne (23 April 2010). "The Financial Burden of Cancer". NCI. Retrieved 8 June 2014. 
  10. ^ a b c Vincent, A; Herman, J; Schulick, R; Hruban, RH; Goggins, M (13 Aug 2011). "Pancreatic cancer.". Lancet 378 (9791): 607–20. doi:10.1016/S0140-6736(10)62307-0. PMID 21620466. 
  11. ^ Tobias Jeffrey S., Hochhauser, Daniel, Cancer and its Management, 2010 (6th edn), pp. 276-277, ISBN 1118713257, 9781118713259
  12. ^ a b c d e Bond-Smith, G; Banga, N; Hammond, TM; Imber, CJ (16 May 2012). "Pancreatic adenocarcinoma.". BMJ (Clinical research ed.) 344: e2476. doi:10.1136/bmj.e2476. PMID 22592847. 
  13. ^ a b "What You Need To Know About Cancer of the Pancreas — National Cancer Institute". 2002-09-16. p. 4/5. Retrieved 2007-12-22. 
  14. ^ Dragovich, Tomislav (13 September 2011). "Pancreatic Cancer". Medscape Reference. 
  15. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 328. doi:10.3322/caac.21190. PMID 23856911. 
  16. ^ Pannala R, Basu A, Petersen GM, Chari ST (January 2009). "New-onset Diabetes: A Potential Clue to the Early Diagnosis of Pancreatic Cancer". The Lancet Oncology 10 (1): 88–95. doi:10.1016/S1470-2045(08)70337-1. PMC 2795483. PMID 19111249. 
  17. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 342–343. doi:10.3322/caac.21190. PMID 23856911. 
  18. ^ Medscape > Pancreatic Cancer Author: Tomislav Dragovich. Chief Editor: Jules E Harris. Updated: 5 May 2011
  19. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 329. doi:10.3322/caac.21190. PMID 23856911. 
  20. ^ AJCC Cancer Staging Manual 2nd edition; Chapter 15; Pancreas – original pages 95–98; page 95 for citation regarding "...lesser degree of involvement of bones and brain and other anatomical sites."
  21. ^ "Causes of pancreatic cancer". NHS Choices. National Health Service, England. Retrieved 9 June 2014. 
  22. ^ "ACS :: What Are the Risk Factors for Cancer of the Pancreas?". Archived from the original on 12 October 2007. Retrieved 2007-12-13. 
  23. ^ Iodice S, Gandini S, Maisonneuve P, Lowenfels AB (July 2008). "Tobacco and the risk of pancreatic cancer: a review and meta-analysis". Langenbeck's Archives of Surgery 393 (4): 535–45. doi:10.1007/s00423-007-0266-2. PMID 18193270. 
  24. ^ a b c d e Ghaneh P, Costello E, Neoptolemos JP (August 2007). "Biology and management of pancreatic cancer". Gut 56 (8): 1134–52. doi:10.1136/gut.2006.103333. PMC 1955499. PMID 17625148. 
  25. ^ Efthimiou E, Crnogorac-Jurcevic T, Lemoine NR, Brentnall TA (February 2001). "Inherited predisposition to pancreatic cancer". Gut 48 (2): 143–7. doi:10.1136/gut.48.2.143. PMC 1728218. PMID 11156628. 
  26. ^ Raderer M, Wrba F, Kornek G, Maca T, Koller DY, Weinlaender G, Hejna M, Scheithauer W (1998). "Association between Helicobacter pylori Infection and Pancreatic Cancer". Oncology 55 (1): 16–19. doi:10.1159/000011830. PMID 9428370. 
  27. ^ Stolzenberg-Solomon RZ, Blaser MJ, Limburg PJ, Perez-Perez G, Taylor PR, Virtamo J, Albanes D (June 2001). "Helicobacter pylori seropositivity as a risk factor for pancreatic cancer". J. Natl. Cancer Inst. 93 (12): 937–41. doi:10.1093/jnci/93.12.937. PMID 11416115. 
  28. ^ Michaud DS, Joshipura K, Giovannucci E, Fuchs CS (January 2007). "A prospective study of periodontal disease and pancreatic cancer in US male health professionals". Journal of the National Cancer Institute 99 (2): 171–5. doi:10.1093/jnci/djk021. PMID 17228001. 
  29. ^ a b Chan JM, Wang F, Holly EA (September 2005). "Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area". Cancer Epidemiology, Biomarkers & Prevention 14 (9): 2093–7. doi:10.1158/1055-9965.EPI-05-0226. PMID 16172215. 
  30. ^ Larsson SC, Wolk A (January 2012). "Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies". Br J Cancer. Online first (3): 603–7. doi:10.1038/bjc.2011.585. PMC 3273353. PMID 22240790. 
  31. ^ "Soft Drink and Juice Consumption and Risk of Pancreatic Cancer: The Singapore Chinese Health Study". 
  32. ^ Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP (2010). "Fructose Induces Transketolase Flux to Promote Pancreatic Cancer Growth". Cancer Res 70 (15): 6368–76. doi:10.1158/0008-5472.CAN-09-4615. PMID 20647326. Retrieved 2013-10-25. 
  33. ^ van Rees BP, Tascilar M, Hruban RH, Giardiello FM, Tersmette AC, Offerhaus GJ (1999). "Remote partial gastrectomy as a risk factor for pancreatic cancer: potential for preventive strategies". Ann Oncol. 10 Suppl 4: 204–207. PMID 10436823. 
  34. ^ Tersmette AC, Giardiello FM, Tytgat GN, Offerhaus GJ (1995). "Carcinogenesis after remote peptic ulcer surgery: the long-term prognosis of partial gastrectomy". Scand J Gastroenterol Suppl. 212: 96–99. doi:10.3109/00365529509090306. PMID 8578237. 
  35. ^ National Institute on Alcohol Abuse and Alcoholism Alcohol and Cancer - Alcohol Alert No. 21-1993
  36. ^ Villeneuve PJ, Johnson KC, Hanley AJ, Mao Y (February 2000). "Alcohol, tobacco and coffee consumption and the risk of pancreatic cancer: results from the Canadian Enhanced Surveillance System case-control project. Canadian Cancer Registries Epidemiology Research Group". European Journal of Cancer Prevention 9 (1): 49–58. doi:10.1097/00008469-200002000-00007. PMID 10777010. 
  37. ^ a b Michaud DS, Giovannucci E, Willett WC, Colditz GA, Fuchs CS (May 2001). "Coffee and alcohol consumption and the risk of pancreatic cancer in two prospective United States cohorts". Cancer Epidemiology, Biomarkers & Prevention 10 (5): 429–37. PMID 11352851. 
  38. ^ Cancer Research UK Pancreatic cancer risks and causes
  39. ^ Ahlgren JD (April 1996). "Epidemiology and risk factors in pancreatic cancer". Seminars in Oncology 23 (2): 241–50. PMID 8623060. 
  40. ^ Cuzick J, Babiker AG (March 1989). "Pancreatic cancer, alcohol, diabetes mellitus and gall-bladder disease". International Journal of Cancer 43 (3): 415–21. doi:10.1002/ijc.2910430312. PMID 2925272. 
  41. ^ Harnack LJ, Anderson KE, Zheng W, Folsom AR, Sellers TA, Kushi LH (December 1997). "Smoking, alcohol, coffee, and tea intake and incidence of cancer of the exocrine pancreas: the Iowa Women's Health Study". Cancer Epidemiology, Biomarkers & Prevention 6 (12): 1081–6. PMID 9419407. 
  42. ^ Schottenfeld, D. and J. Fraumeni, ed. Cancer epidemiology and prevention. 2nd ed., ed. Vol. 1996, Oxford University Press: Oxford[page needed]
  43. ^ a b Ye W, Lagergren J, Weiderpass E, Nyrén O, Adami HO, Ekbom A (August 2002). "Alcohol abuse and the risk of pancreatic cancer". Gut 51 (2): 236–9. doi:10.1136/gut.51.2.236. PMC 1773298. PMID 12117886. 
  44. ^ a b Silverman DT, Brown LM, Hoover RN, Schiffman M, Lillemoe KD, Schoenberg JB, Swanson GM, Hayes RB, Greenberg RS, Benichou J (November 1995). "Alcohol and pancreatic cancer in blacks and whites in the United States". Cancer Research 55 (21): 4899–905. PMID 7585527. 
  45. ^ Olsen GW, Mandel JS, Gibson RW, Wattenberg LW, Schuman LM (August 1989). "A case-control study of pancreatic cancer and cigarettes, alcohol, coffee and diet". American Journal of Public Health 79 (8): 1016–9. doi:10.2105/AJPH.79.8.1016. PMC 1349898. PMID 2751016. 
  46. ^ "Pancreatic cancer risk factors". 2008-11-04. Retrieved 2009-09-15. 
  47. ^ a b c "In summary, a weak positive association between alcohol intake during adulthood and pancreatic cancer risk was observed in the highest category of intake (≥30g/day or approximately 2 alcoholic beverages/day). Associations with alcohol intake were stronger among individuals who were normal weight. Thus, our findings are consistent with a modest increase in risk of pancreatic cancer for alcohol intakes of at least 30 grams/day." Genkinger JM, Spiegelman D, Anderson KE, Bergkvist L, Bernstein L, van den Brandt PA, English DR, Freudenheim JL, Fuchs CS, Giles GG, Giovannucci E, Hankinson SE, Horn-Ross PL, Leitzmann M, Männistö S, Marshall JR, McCullough ML, Miller AB, Reding DJ, Robien K, Rohan TE, Schatzkin A, Stevens VL, Stolzenberg-Solomon RZ, Verhage BA, Wolk A, Ziegler RG, Smith-Warner SA (March 2009). "ALCOHOL INTAKE AND PANCREATIC CANCER RISK: A POOLED ANALYSIS OF FOURTEEN COHORT STUDIES". Cancer Epidemiology, Biomarkers & Prevention 18 (3): 765–76. doi:10.1158/1055-9965.EPI-08-0880. PMC 2715951. PMID 19258474. 
  48. ^ Zatonski WA, Boyle P, Przewozniak K, Maisonneuve P, Drosik K, Walker AM (February 1993). "Cigarette smoking, alcohol, tea and coffee consumption and pancreas cancer risk: a case-control study from Opole, Poland". International Journal of Cancer 53 (4): 601–7. doi:10.1002/ijc.2910530413. PMID 8436433. 
  49. ^ Durbec JP, Chevillotte G, Bidart JM, Berthezene P, Sarles H (April 1983). "Diet, alcohol, tobacco and risk of cancer of the pancreas: a case-control study". British Journal of Cancer 47 (4): 463–70. doi:10.1038/bjc.1983.75. PMC 2011343. PMID 6849792. 
  50. ^ Bueno de Mesquita HB, Maisonneuve P, Moerman CJ, Runia S, Boyle P (February 1992). "Lifetime consumption of alcoholic beverages, tea and coffee and exocrine carcinoma of the pancreas: a population-based case-control study in The Netherlands". International Journal of Cancer 50 (4): 514–22. doi:10.1002/ijc.2910500403. PMID 1537615. 
  51. ^ Bakkevold KE, Arnesjø B, Kambestad B (April 1992). "Carcinoma of the pancreas and papilla of Vater: presenting symptoms, signs, and diagnosis related to stage and tumour site. A prospective multicentre trial in 472 patients. Norwegian Pancreatic Cancer Trial". Scandinavian Journal of Gastroenterology 27 (4): 317–25. doi:10.3109/00365529209000081. PMID 1589710. 
  52. ^ Frank J. Domino M.D. (2007). 5 minutes clinical suite version 3. Philadelphia, PA: Lippincott Williams & Wilkins. [page needed]
  53. ^ a b Philip Agop, "Pancreatic Cancer". ACP PIER & AHFX DI Essentials. American College of Physicians. 4 Apr 2008. Accessed 7 Apr 2009.[page needed]
  54. ^ Tempero MA, Arnoletti JP, Behrman S, Ben-Josef E, Benson AB, Berlin JD, Cameron JL, Casper ES, Cohen SJ, Duff M, Ellenhorn JD, Hawkins WG, Hoffman JP, Kuvshinoff BW, Malafa MP, Muscarella P, Nakakura EK, Sasson AR, Thayer SP, Tyler DS, Warren RS, Whiting S, Willett C, Wolff RA (September 2010). "Pancreatic adenocarcinoma". J Natl Compr Canc Netw 8 (9): 972–1017. PMC 3135380. PMID 20876541. 
  55. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 329–330. doi:10.3322/caac.21190. PMID 23856911. 
  56. ^ Sarkar FH, Banerjee S, Li Y (November 2007). "Pancreatic cancer: pathogenesis, prevention and treatment". Toxicol. Appl. Pharmacol. 224 (3): 326–36. doi:10.1016/j.taap.2006.11.007. PMC 2094388. PMID 17174370. 
  57. ^ Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR (31 January 2012). "Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer". Proceedings of the National Academy of Sciences of the United States of America 109 (5): E252–9. doi:10.1073/pnas.1114817109. PMC 3277150. PMID 22233809. 
  58. ^ Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (26 September 2008). "Core signaling pathways in human pancreatic cancers revealed by global genomic analyses". Science 321 (5897): 1801–6. doi:10.1126/science.1164368. PMC 2848990. PMID 18772397. 
  59. ^ Delpu Y, Hanoun N, Lulka H, Sicard F, Selves J, Buscail L, Torrisani J, Cordelier P (2011). "Genetic and epigenetic alterations in pancreatic carcinogenesis". Curr Genomics 12 (1): 15–24. doi:10.2174/138920211794520132. PMC 3129039. PMID 21886451. 
  60. ^ Tobias Jeffrey S., Hochhauser, Daniel, Cancer and its Management, p. 276, 2010 (6th edn), ISBN 1118713257, 9781118713259
  61. ^ a b c Johns Hopkins Medicine; The Sol Goldman Pancreas Cancer Research Center. Types of Pancreas Tumors.
  62. ^ Farrell, JJ; Fernández-del Castillo, C (Jun 2013). "Pancreatic cystic neoplasms: management and unanswered questions.". Gastroenterology 144 (6): 1303–15. doi:10.1053/j.gastro.2013.01.073. PMID 23622140. 
  63. ^ a b c d e f g h Yao JC, Eisner MP, Leary C, Dagohoy C, Phan A, Rashid A, Hassan M, Evans DB (2007). "Population-Based Study of Islet Cell Carcinoma". Annals of Surgical Oncology 14 (12): 3492–3500. doi:10.1245/s10434-007-9566-6. PMC 2077912. PMID 17896148. 
  64. ^ a b c Benson AB, Myerson RJ, and Sasson AR. Pancreatic, Neuroendocrine GI, and Adrenal Cancers. Cancer Management 13th edition.
  65. ^ "The prognosis of patients with PENs is difficult to predict, in part because the definition of malignancy in PENs has been ambiguous. By some, PENs have been defined as malignant only when lymph nodes are involved or liver metastases are documented. Other investigators have included vascular invasion or invasion of adjacent structures as evidence of malignancy. However, the concept that a PEN removed successfully without recurrence was therefore biologically benign could be challenged. In fact, strict separation of PENs into benign and malignant groups may be less clinically useful than the definition of prognostic factors."Hochwald SN, Zee S, Conlon KC, Colleoni R, Louie O, Brennan MF, Klimstra DS (2002). "Prognostic Factors in Pancreatic Endocrine Neoplasms: An Analysis of 136 Cases with a Proposal for Low-Grade and Intermediate-Grade Groups". Journal of Clinical Oncology 20 (11): 2633–2642. doi:10.1200/JCO.2002.10.030. PMID 12039924. 
  66. ^ "One of the most controversial aspects of PENs has been the prediction of prognosis."Klimstra DS (2007). "Nonductal neoplasms of the pancreas". Modern Pathology 20: S94–S112. doi:10.1038/modpathol.3800686. PMID 17486055. 
  67. ^ "The classification of these tumors remains controversial, and prognosis is difficult to predict" Wendy L. Frankel (2006) Update on Pancreatic Endocrine Tumors. Archives of Pathology & Laboratory Medicine: July 2006, Vol. 130, No. 7, pp. 963–966.[963:UOPET]2.0.CO;2
  68. ^ Modlin
  69. ^ "Can Cancer of the Pancreas Be Prevented?". American Cancer Society. Archived from the original on 12 October 2007. Retrieved 2007-12-13. 
  70. ^ Coughlin SS, Calle EE, Patel AV, Thun MJ (December 2000). "Predictors of pancreatic cancer mortality among a large cohort of United States adults". Cancer Causes & Control 11 (10): 915–23. doi:10.1023/A:1026580131793. ISSN 0957-5243. PMID 11142526. 
  71. ^ Zheng W, McLaughlin JK, Gridley G, Bjelke E, Schuman LM, Silverman DT, Wacholder S, Co-Chien HT, Blot WJ, Fraumeni JF (September 1993). "A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States)". Cancer Causes & Control 4 (5): 477–82. doi:10.1007/BF00050867. PMID 8218880. 
  72. ^ Larsson SC, Håkansson N, Näslund I, Bergkvist L, Wolk A (February 2006). "Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study". Cancer Epidemiology, Biomarkers & Prevention 15 (2): 301–05. doi:10.1158/1055-9965.EPI-05-0696. PMID 16492919. 
  73. ^ "Health | Vitamin D 'slashes cancer risk'". BBC News. 2006-09-15. Retrieved 2009-09-15.  The BBC quoted the lead researcher: "I would make no specific recommendation for vitamin D supplementation to prevent pancreatic cancer until we can carry out a trial to determine definitively who might benefit from such an intervention." The BBC quoted Henry Scowcroft, science information officer at the charity Cancer Research UK: "The results of this study don't mean that people should take vitamin D supplements to ward off pancreatic cancer, especially as vitamin D can be harmful in large quantities...As the authors themselves point out, this is the very first study to find any association between the disease and vitamin D intake...So this result needs to be repeated in other large studies, and scientists need to show exactly how vitamin D might prevent pancreatic cancer before we could issue any specific lifestyle advice."
  74. ^ "Vitamin D May Cut Pancreatic Cancer". 2006-09-12. 
  75. ^ a b Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. Dietary Reference Intakes for Calcium and Vitamin D IOM, 30 November 2010: "The IOM finds that the evidence supports a role for vitamin D and calcium in bone health but not in other health conditions. Further, emerging evidence indicates that too much of these nutrients may be harmful, challenging the concept that "more is better."
  76. ^ World Health Organization; International Agency for Research on Cancer (IARC). Vitamin D and Cancer. IARC Working Group Reports Vol.5, International Agency for research on Cancer, Lyon, 25 November 2008
  77. ^ Lipson P. Vitamin D: Still more questions than answers. "Vitamin D deficiency is common in people with poor diets (including obese people) and in people who are relatively inactive. These are independent risk factors for... some cancers. And while some cellular mechanisms have been discovered that may lend plausibility to a vitamin D hypothesis, there are as... yet no convincing data that allow us to draw conclusions about vitamin D and these diseases."
  78. ^ Schernhammer E, Wolpin B, Rifai N, Cochrane B, Manson JA, Ma J, Giovannucci E, Thomson C, Stampfer MJ, Fuchs C (June 2007). "Plasma folate, vitamin B6, vitamin B12, and homocysteine and pancreatic cancer risk in four large cohorts". Cancer Research 67 (11): 5553–60. doi:10.1158/0008-5472.CAN-06-4463. PMID 17545639. 
  79. ^ Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (Jan 2011). "Effect of daily aspirin on long term risk of death due to cancer: analysis of individual patient data from randomised trials". Lancet 337 (9759): 31–41. doi:10.1016/S0140-6736(10)62110-1. PMID 21144578. 
  80. ^ Seufferlein, T; Bachet, JB; Van Cutsem, E; Rougier, P; ESMO Guidelines Working, Group (Oct 2012). "Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up.". Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 23 Suppl 7: vii33–40. doi:10.1093/annonc/mds224. PMID 22997452. 
  81. ^ a b Stoita, A; Penman, ID; Williams, DB (21 May 2011). "Review of screening for pancreatic cancer in high risk individuals.". World journal of gastroenterology : WJG 17 (19): 2365–71. doi:10.3748/wjg.v17.i19.2365. PMC 3103788. PMID 21633635. Retrieved 18 July 2014. 
  82. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 329–332. doi:10.3322/caac.21190. PMID 23856911. 
  83. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 332–343. doi:10.3322/caac.21190. PMID 23856911. 
  84. ^ a b "Surgical Treatment of Pancreatic Cancer". Johns Hopkins University. Retrieved 5 September 2009. 
  85. ^ Corbo V, Tortora G, Scarpa A (2012) Molecular pathology of pancreatic cancer: from bench-to-bedside translation. Curr Drug Targets
  86. ^ "Laparoscopic Pancreas Surgery". Johns Hopkins University. Retrieved 5 September 2009. 
  87. ^ Cite error: The named reference ESMOPA was invoked but never defined (see the help page).
  88. ^ Wolfgang, CL; Herman, JM; Laheru, DA; Klein, AP; Erdek, MA; Fishman, EK; Hruban, RH (Sep 2013). "Recent progress in pancreatic cancer.". CA: a cancer journal for clinicians 63 (5): 336–337. doi:10.3322/caac.21190. PMID 23856911. 
  89. ^ Arcidiacono PG, Calori G, Carrara S, McNicol ED, Testoni PA (2011). "Celiac plexus block for pancreatic cancer pain in adults". In Arcidiacono, Paolo G. Cochrane Database Syst Rev (3): CD007519. doi:10.1002/14651858.CD007519.pub2. PMID 21412903. 
  90. ^ Pancreatic Adenocarcinoma (access to the guideline section of the website is free, but may require registration; see sections "PANC-F" and "MS")
  91. ^ Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Büchler MW (March 2004). "A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer". The New England Journal of Medicine 350 (12): 1200–10. doi:10.1056/NEJMoa032295. PMID 15028824. 
  92. ^ a b Thota, R; Pauff, JM; Berlin, JD (Jan 2014). "Treatment of metastatic pancreatic adenocarcinoma: a review.". Oncology (Williston Park, N.Y.) 28 (1): 70–4. PMID 24683721. 
  93. ^ "Palliative or Supportive Care". American Cancer Society. Retrieved 20 August 2014. 
  94. ^ Buanes, TA (14 August 2014). "Pancreatic cancer-improved care achievable.". World journal of gastroenterology : WJG 20 (30): 10405–10418. PMID 25132756. 
  95. ^ "If treatment for pancreatic cancer stops workin". American Cancer Society. Retrieved 20 August 2014. 
  96. ^ Fazal, S; Saif, MW (10 March 2007). "Supportive and palliative care of pancreatic cancer.". JOP : Journal of the pancreas 8 (2): 240–53. PMID 17356251. 
  97. ^ Wang F, Herrington M, Larsson J, Permert J (January 2003). "The relationship between diabetes and pancreatic cancer". Molecular Cancer 2: 4. doi:10.1186/1476-4598-2-4. PMC 149418. PMID 12556242. 
  98. ^ "WHO | Cancer". Retrieved 2009-09-15. 
  99. ^ Fesinmeyer MD, Austin MA, Li CI, De Roos AJ, Bowen DJ (2005). "Differences in Survival by Histologic Type of Pancreatic Cancer". Cancer Epidemiology Biomarkers & Prevention 14 (7): 1766–1773. doi:10.1158/1055-9965.EPI-05-0120. PMID 16030115. 
  100. ^ Fesinmeyer MD, Austin MA, Li CI, De Roos AJ, Bowen DJ (2005). "Differences in survival by histologic type of pancreatic cancer". Cancer Epidemiol. Biomarkers Prev. 14 (7): 1766–73. doi:10.1158/1055-9965.EPI-05-0120. PMID 16030115. 
  101. ^ "WHO Disease and injury country estimates". World Health Organization. 2009. Retrieved Nov 11, 2009. 
  102. ^ Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (15 December 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. PMID 23245604. 
  103. ^ "Pancreatic Cancer — National Cancer Institute, U.S. National Institutes of Health (Accessed 28 April 2011)". Retrieved 2009-09-15. 
  104. ^ Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007). "Cancer statistics, 2007". CA 57 (1): 43–66. doi:10.3322/canjclin.57.1.43. PMID 17237035. 
  105. ^ "What’s new in pancreatic cancer research and treatment?". American Cancer Society. Retrieved 17 July 2014. 
  106. ^ "Pancreatic cancer research". Cancer Research UK. Retrieved 17 July 2014. 
  107. ^ Marie, McCulloch (13 July 2014). "Researchers step up hunt for new pancreatic-cancer treatments". The Philadelphia Inquirer. Retrieved 17 July 2014. 
  108. ^ Australian Pancreatic Genome Initiative |url= missing title (help). Retrieved 17 July 2014. 
  109. ^ Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Lynn Fink, J.; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Scott Mead, R.; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Biankin, Andrew V.; Johns, Amber L.; Mawson, Amanda; Chang, David K.; Scarlett, Christopher J.; Brancato, Mary-Anne L.; Rowe, Sarah J.; Simpson, Skye L.; Martyn-Smith, Mona; Thomas, Michelle T.; Chantrill, Lorraine A.; Chin, Venessa T.; Chou, Angela; Cowley, Mark J.; Humphris, Jeremy L.; Jones, Marc D.; Scott Mead, R.; Nagrial, Adnan M.; Pajic, Marina; Pettit, Jessica; Pinese, Mark; Rooman, Ilse; Wu, Jianmin; Tao, Jiang; DiPietro, Renee; Watson, Clare; Wong, Rachel; Pinho, Andreia V.; Giry-Laterriere, Marc; Daly, Roger J.; Musgrove, Elizabeth A.; Sutherland, Robert L.; Grimmond, Sean M.; Waddell, Nicola; Kassahn, Karin S.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Lynn Fink, J.; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Newell, Felicity; Pearson, John V.; Samra, Jaswinder S.; Gill, Anthony J.; Pavlakis, Nick; Guminski, Alex; Toon, Christopher; Biankin, Andrew V.; Asghari, Ray; Merrett, Neil D.; Chang, David K.; Pavey, Darren A.; Das, Amitabha; Cosman, Peter H.; Ismail, Kasim; O’Connor, Chelsie; Lam, Vincent W.; McLeod, Duncan; Pleass, Henry C.; Richardson, Arthur; James, Virginia; Kench, James G.; Cooper, Caroline L.; Joseph, David; Sandroussi, Charbel; Crawford, Michael; Gallagher, James; Texler, Michael; Forrest, Cindy; Laycock, Andrew; Epari, Krishna P.; Ballal, Mo; Fletcher, David R.; Mukhedkar, Sanjay; Spry, Nigel A.; DeBoer, Bastiaan; Chai, Ming; Zeps, Nikolajs; Beilin, Maria; Feeney, Kynan; Nguyen, Nam Q.; Ruszkiewicz, Andrew R.; Worthley, Chris; Tan, Chuan P.; Debrencini, Tamara; Chen, John; Brooke-Smith, Mark E.; Papangelis, Virginia; Tang, Henry; Barbour, Andrew P.; Clouston, Andrew D.; Martin, Patrick; O’Rourke, Thomas J.; Chiang, Amy; Fawcett, Jonathan W.; Slater, Kellee; Yeung, Shinn; Hatzifotis, Michael; Hodgkinson, Peter; Christophi, Christopher; Nikfarjam, Mehrdad; Mountain Victorian Cancer Biobank, Angela; Eshleman, James R.; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Hodgin, Mary B.; Scarpa, Aldo; Lawlor, Rita T.; Capelli, Paola; Beghelli, Stefania; Corbo, Vincenzo; Scardoni, Maria; Pederzoli, Paolo; Tortora, Giampaolo; Bassi, Claudio; Tempero, Margaret A.; Kakkar, Nipun; Zhao, Fengmei; Qing Wu, Yuan; Wang, Min; Muzny, Donna M.; Fisher, William E.; Charles Brunicardi, F.; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M. (24 October 2012). "Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes". Nature 491 (7424): 399–405. doi:10.1038/nature11547. 
  110. ^ European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer (EUROPAC) website |url= missing title (help). Retrieved 17 July 2014. 
  111. ^ Moore, M. J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J. R.; Gallinger, S.; Au, H. J.; Murawa, P.; Walde, D.; Wolff, R. A.; Campos, D.; Lim, R.; Ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. (9 April 2007). "Erlotinib Plus Gemcitabine Compared With Gemcitabine Alone in Patients With Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group". Journal of Clinical Oncology 25 (15): 1960–1966. doi:10.1200/JCO.2006.07.9525. 
  112. ^ Neesse, Albrecht; Gress, Thomas M.; Tuveson, David A.; Michl, Patrick; Krug, Sebastian. "Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma". OncoTargets and Therapy: 33. doi:10.2147/OTT.S38111. 
  113. ^ Cook, N; Jodrell, DI; Tuveson, DA (Mar 2012). "Predictive in vivo animal models and translation to clinical trials.". Drug Discovery Today 17 (5-6): 253–60. doi:10.1016/j.drudis.2012.02.003. PMID 22493784. 
  114. ^ Fong, Yuman; Ady, Justin; Heffner, Jacqueline; Klein, Elizabeth. "Oncolytic viral therapy for pancreatic cancer: current research and future directions". Oncolytic Virotherapy: 35. doi:10.2147/OV.S53858. 
  115. ^ Subar, D.; Gobardhan, P.D.; Gayet, B. "Laparoscopic pancreatic surgery". Best Practice & Research Clinical Gastroenterology 28 (1): 123–132. doi:10.1016/j.bpg.2013.11.011. 

External links[edit]