Oxidoreductase

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search

In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another the oxidant, also called the electron acceptor. This group of enzymes usually utilizes NADP or NAD+ as cofactors.

Reactions[edit]

For example, an enzyme that catalyzed this reaction would be an oxidoreductase:

A + B → A + B

In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor).

In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:

Pi + glyceraldehyde-3-phosphate + NAD+ → NADH + H+ + 1,3-bisphosphoglycerate

In this reaction, NAD+ is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate is the reductant (electron donor).

Nomenclature[edit]

Proper names of oxidoreductases are formed as "donor:acceptor oxidoreductase"; however, other names are much more common. The common name is "donor dehydrogenase" when possible, such as glyceraldehyde-3-phosphate dehydrogenase for the second reaction above. Common names are also sometimes formed as "acceptor reductase", such as NAD+ reductase. "Donor oxidase" is a special case where O2 is the acceptor.

Classification[edit]

Oxidoreductases are classified as EC 1 in the EC number classification of enzymes. Oxidoreductases can be further classified into 22 subclasses:

See also[edit]

External links[edit]