Monarch butterfly

From Wikipedia, the free encyclopedia - View original article

Monarch butterfly
Conservation status
Scientific classification
Kluk, 1780
Species:D. plexippus
Binomial name
Danaus plexippus
(Linnaeus, 1758)

Danaus archippus (Fabricius, 1793)[1]
Danaus menippe (Hübner, 1816)[2]

  (Redirected from Monarch (butterfly))
Jump to: navigation, search
Monarch butterfly
Conservation status
Scientific classification
Kluk, 1780
Species:D. plexippus
Binomial name
Danaus plexippus
(Linnaeus, 1758)

Danaus archippus (Fabricius, 1793)[1]
Danaus menippe (Hübner, 1816)[2]

The monarch butterfly (Danaus plexippus) is a milkweed butterfly (subfamily Danainae) in the family Nymphalidae. It may be the most familiar North American butterfly. The monarch butterfly is not currently listed under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) or protected specifically under U.S. domestic laws.[3] Its wings feature an easily recognizable orange and black pattern, with a wingspan of 8.9–10.2 cm (3½–4 in).[4] (The viceroy butterfly is similar in color and pattern, but is markedly smaller, and has an extra black stripe across the hind wing.) Female monarchs have darker veins on their wings, and the males have a spot called the androconium in the center of each hind wing.[5] Males are also slightly larger than female monarchs.

The eastern North American monarch population is notable for its southward late summer/autumn migration from the United States and southern Canada to Mexico, covering thousands of miles. The western North American population of monarchs west of the Rocky Mountains migrate to California.


The name 'monarch' may be in honor of King William III of England.[6]

The monarch was originally named by Linnaeus in his Systema Naturae of 1758 and it was placed in the genus Papilio.[7] In 1780, Jan Krzysztof Kluk used the monarch as the type species for a new genus; Danaus.

The monarch is closely related to two very similar species that formed the Danaus (Danaus) subgenus before 2005. The first is the Jamaican monarch (D. cleophile) from Jamaica and Hispaniola. The second is the southern monarch (D. erippus), of South America south of the Amazon river. The southern monarch is almost indistinguishable from the monarch as an adult, though the pupae are somewhat different, and is often considered a subspecies of the monarch proper. But analysis of morphological, mtDNA 12S rRNA, cytochrome c oxidase subunit I, nuclear DNA 18S rRNA and EF1 subunit α sequence data by Smith et al. (2005) indicates it is better considered a distinct species. The separation of the monarch and southern monarch is comparatively recent. In all likelihood, the ancestors of the southern monarch separated from the monarch's population some 2 mya, at the end of the Pliocene. At the time, sea levels were higher and the entire Amazonas lowland was a vast expanse of brackish swamp that offered hardly any butterfly habitat.[8]

Following the review of Smith et al. (2005), two subspecies of the monarch are recognized:[8]

Smith et al. did not take up Danaus plexippus nigrippus in their studies. According to Hay-Roe et al. (2007), this taxon is still recognised as a subspecies:[9]

Origin of name[edit]

Danaus (Greek Δαναός), a great-grandson of Zeus, was a mythical king in Egypt or Libya, who founded Argos; Plexippus was one of the 50 sons of Aegyptus, the twin brother of Danaus.

In Homeric Greek plexippos (πληξιππος) means "one who urges on horses", i.e. "rider or charioteer". In the 10th edition of Systema Naturae, at the bottom of page 467,[10] Linnaeus wrote that the names of the Danai festivi, the division of the genus to which Papilio plexippus belonged, were derived from the sons of Aegyptus.[11][12]


Underside of a D. p. plexippus feeding on nectar from an Echinacea purpurea flower

The monarch’s wingspan ranges from 8.9–10.2 cm (3½–4 in).[4] The upper side of the wings is tawny-orange, the veins and margins are black, and in the margins are two series of small white spots. The fore wings also have a few orange spots near the tip. The underside is similar, but the tip of the fore wing and hind wing are yellow-brown instead of tawny-orange and the white spots are larger.[13]

The male has a black patch of androconial scales on either hind wing (in some butterflies, these patches disperse pheromones, but are not known to do so in monarchs), and the black veins on its wing are narrower than the female’s. The male is also slightly larger.[13]

A color variation has been observed in Australia, New Zealand, Indonesia and the United States as early as the late 19th century. Named nivosus by lepidopterists, it is grayish-white in all areas of the wings that are normally orange. Generally, it is only about 1% or less of all monarchs, but has maintained populations as high as 10% on Oahu in Hawaii, possibly due to selective predation.[14]

Like all insects, the monarch has six legs, but uses the four hindlegs as it carries its two front legs against its body.[15]

The eggs are creamy white and later turn pale yellow. They are elongated and subconical, with about 23 longitudinal ridges and many fine traverse lines.[13] A single egg weighs about 0.46 mg (0.0071 gr), and measures about 1.2 mm (47 mils) high and 0.9 mm (35 mils) wide.[16][17]

The caterpillar is banded with yellow, black, and white stripes. The head is also striped with yellow and black. Two pairs of black filaments are seen, one pair on each end of the body. The caterpillar reaches a length of 5 cm (2 in).[18]

The chrysalis is blue-green with a band of black and gold on the end of the abdomen. Other gold spots occur on the thorax, the wing bases, and the eyes.[19]

Range and distribution[edit]

Since the 19th century, it has been found in New Zealand, and in Australia. [20] It is resident in the Caribbean, Canary Islands, the Azores, and Madeira, Portugal, Spain[21] and is found as an occasional migrant in Western Europe and a rare migrant in the United Kingdom.[22] In North America, the monarch ranges from southern Canada to northern South America. It rarely strays to western Europe (rarely as far as Greece) from being transported by US ships or by flying there if weather and wind conditions are right. It has also been found in Bermuda, Cook Islands,[23] Hawaii, the Solomons, New Caledonia, New Zealand, Australia, New Guinea, Ceylon, India, Nepal, the Azores, and the Canary Islands.[19]


Monarch migration route
Overwintering monarchs cluster on oyamel trees in a preserve outside of Angangueo, Michoacan, Mexico; one tree is completely covered in butterflies.
Monarch Butterflies in Pacific Grove, California
Monarchs migrating during fall in central Texas

The eastern population migrates hundreds to thousands of miles to overwintering sites in Mexico. Southward migrations start in August and end at the first frost. There is a northward migration in the spring.[24] The eastern population migrates both north and south on an annual basis. But no individual makes the entire round trip. Female monarchs lay eggs for the next generation during these migrations.[25]

By the end of October, the population east of the Rocky Mountains migrates to the sanctuaries of the Mariposa Monarca Biosphere Reserve within the Trans-Mexican Volcanic Belt pine-oak forests in the Mexican states of Michoacán and México. The western population overwinters in various coastal sites in central and southern California, United States, notably in Pacific Grove, Santa Cruz, and Grover Beach.

The length of these journeys exceeds the normal lifespan of most monarchs, which is less than two months for butterflies born in early summer. The last generation of the summer enters into a nonreproductive phase known as diapause, which may last seven months or more.[5] During diapause, butterflies fly to one of many overwintering sites. The overwintering generation generally does not reproduce until it leaves the overwintering site sometime in February and March.

The overwintered population of those east of the Rockies may reach as far north as Texas and Oklahoma during the spring migration. The second, third and fourth generations return to their northern locations in the United States and Canada in the spring.

Migratory Theory Mechanisms[edit]

The North American Western and Eastern populations (D. plexippus) migrate to established overwintering spots each autumn. In one study monarchs released during the fall migration from Albuquerque, New Mexico were found overwintering in California and in Mexico.[26] The same study tested the ability of commercially bred monarchs (to the 9th generation) to migrate to overwintering areas.[26] Flight navigational patterns may be inherited, based on a combination of the position of the sun in the sky[27] and a time-compensated Sun compass that depends upon a circadian clock based in their antennae.[28][29] These populations may use the earth's magnetic field for orientation. The antennae contain cryptochrome, a photoreceptor protein sensitive to the violet-blue part of the light spectrum. In the presence of violet or blue light, it can function as a chemical compass.[30][31] Studies demonstrate that eastern and western populations do not use an internal ‘map’ to navigate to overwintering locations but instead are guided by a ‘compass’ which compels them to migrate in a southwest direction. This southwest directional migration is affected by large geographical features like the Rocky Mountains and The Gulf of Mexico.[32]

Global Migrations[edit]

Monarch butterflies can and have crossed the Atlantic. They are becoming more common in Bermuda and Spain, due to increased use of milkweed as an ornamental plant.[33] Monarch butterflies in Bermuda and Spain do not migrate. Butterflies sometimes appear in Great Britain. In Australia, monarchs make limited migrations in cooler areas,[34] On the islands of Hawaii, no migrations have been noted. The Southern Monarch, D. erippus migrates along the eastern edge of the Andean mountains in the autumn in Bolivia and Peru.[35]

One study examined wing colors of migrating monarchs using computer image analysis, and found migrants had darker orange (reddish-colored) wings than breeding monarchs.[36]


The monarch is not limited to forest sanctuaries but can found in agricultural fields and pasture land, prairie remnants, urban and suburban residential areas, gardens, trees, and roadsides. The eastern North American overwinters in Mexican conifer groves.[37][38]

Adult food sources[edit]

Monarch butterfly drinking nectar
Monarch butterfly feeding on nectar

Although larvae eat only milkweed, adult monarchs feed on the following nectar plants:

Males also take in moisture and minerals from damp soil and wet gravel, a behavior known as mud-puddling. The monarch has also been noticed puddling at an oil stain on pavement.[38] Adult butterflies are also attracted to the liquids of foods we consume; they will drink mushy slices of bananas, oranges, and watermelon.


Monarch butterfly mating

The mating period for the overwinter population occurs in the spring, just prior to migration from the overwintering sites. The courtship is fairly simple and less dependent on chemical pheromones than other species in its genus.[39] Courtship is composed of two distinct stages, the aerial phase and the ground phase. During the aerial phase, the male pursues, nudges, and eventually takes down the female. Copulation occurs during the ground phase, where the male and female remain attached for about 30 to 60 minutes.[40] Only 30% of mating attempts end in copulation, suggesting that females have methods to avoid unwanted matings.[41] Differences in female ability to resist mating affect pairing patterns.[42] A spermatophore is transferred from the male to the female. Along with sperm, the spermatophore is thought to provide the female with energy resources to aid her in carrying out reproduction and remigration. The overwinter population returns only as far north as they need to go to find the early milkweed growth; in the case of the eastern butterflies, that is commonly southern Texas. The life cycle of a monarch includes a change of form called complete metamorphosis. The monarch goes through four radically different stages:

  1. The eggs are laid by the females during spring and summer breeding months onto the leaves of milkweed plants.[43]
  2. The eggs hatch (after four days), revealing worm-like larvae, the caterpillars. The caterpillars consume their egg cases, then feed on milkweed, and sequester substances called cardenolides, a type of cardiac glycoside. During the caterpillar stage, monarchs store energy in the form of fat and nutrients to carry them through the nonfeeding pupal stage. The caterpillar stage lasts around two weeks.
  3. In the pupa or chrysalis stage, the caterpillar spins a silk pad on a twig or leaf, and hangs from this pad by its last pair of prolegs. It hangs upside down in the shape of a 'J', and then molts, leaving itself encased in an articulated green exoskeleton. At this point, hormonal changes occur, leading to the development of a butterfly (metamorphosis). The chrysalis darkens (the exoskeleton becomes transparent) a day before it emerges, and its orange and black wings can be seen.
  4. The mature butterfly emerges after about two pupal weeks, and hangs from the split chrysalis for several hours until its wings are dry (often in the morning). Meanwhile, fluids are pumped into the crinkled wings until they become full and stiff. Some of this orangey fluid (called meconium) drips from the wings. Finally (usually in the afternoon), the monarch spreads its wings, quivers them to be sure they are stiff, and then flies away to feed on a variety of flowers, including milkweed flowers, red clover, and goldenrod.

Monarchs can live two to eight weeks in a garden having their host Asclepias plants and sufficient flowers for nectar. This is especially true if the flower garden happens to be surrounded by native forests that lack flowers.[citation needed]

Sexual selection[edit]

Reproduction does not appear to be influenced by parasite levels. Instead it affected by size, fluctuating asymmetry, and wing condition of females.[citation needed] By the end of the mating season, larger females contain fewer spermatophores. Mating females are more asymmetric than non-mating females which plays a role in determining mate pairing.[citation needed] Females often resist male mating attempts. Studies suggest that damaged wings decrease mating in females.[42] Males who are fit are more likely to mate a greater proportion of days and are also more likely to achieve copulation. Both females and males typically mate more than once.[41] Spermatophore nutrients are absorbed and used in egg production. Females that mate several times laid more eggs than females who only mate once.[44]

Sperm competition[edit]

Male monarchs produce spermatophores, a sperm sac embedded in a gelatinous body, from accessory gland secretions.[45][46] Since male monarchs are highly polyandrous and females store sperm, there is need for sperm competition, selecting for males that gain sperm precedence. The spermatophore size of males increases with increasing time between matings, and larger spermatophores delay female re-mating. Therefore, by waiting to re-mate, males increase their sexual competitiveness, ultimately increasing the number of ova fertilized by their sperm.[44]

In addition, the production of large spermatophores could also benefit the females because spermatophore constituents may be used by females to affect the amount of offspring produced or the quality of offspring produced. By increasing female reproductive success, male reproductive success also increases. Studies have shown that the contents of Lepidopteran spermatophores are incorporated into the eggs and somatic tissue of females. Therefore, an increase in spermatophore size also increases the fecundity of female monarchs.[44] Sperm from males that produce larger spermatophores could also fertilize more female's eggs without increasing her lifetime reproductive success.[47]

Sperm precedence patterns were also observed, where second-male sperm precedence was more common than first or no-male sperm precedence. The advantage of second-male sperm suggests that the incoming sperm pushes back previously existing sperm, resulting in different layers of sperm from different males. However, second-male sperm precedence is rarely complete, suggesting that the sperm from the first male remains in the fertilization set, acting as a barrier to block sperm from other males.[47]

Pictorial lifecycle[edit]

Host plants[edit]

The host plants used by the monarch caterpillar include:




Defense against predators[edit]

Swamp milkweed, one of many species of Asclepias milkweeds used by the monarch
Chemical structure of oleandrin, one of the cardiac glycosides

In both caterpillar and butterfly form, monarchs use a bright display of contrasting colors to warn potential predators of its undesirable taste and poisonous characteristics. This aposematic behavior is common among many insects, amphibians, and mammals alike. Additionally, monarchs are physically similar to the viceroy butterfly, exhibiting a classic case of mimicry.


Monarchs are foul-tasting and poisonous due to the presence of cardenolide aglycones in their bodies, which the caterpillars ingest as they feed on milkweed.[39] By ingesting a large amount of plants in the genus Asclepias, primarily milkweed, monarch caterpillars are able to sequester cardiac glycosides, or more specifically cardenolides, which are steroids that act in heart-arresting ways similar to digitalis.[48] It has been found that monarchs are able to sequester cardenolides most effectively from plants of intermediate cardenolide content rather than those of high or low content.[49]

Additional studies have shown that different species of milkweed have differing effects on growth, virulence, and transmission of parasites.[50] One specific species (Asclepias curassavica) appears to reduce the proportion of monarchs infected by parasites. There are two possible explanations for the positive role of A. curassavica on the monarch caterpillar. The first is that A. curassavica promotes overall monarch health to boost the monarch’s immune system. A second theory is that A. curassavica has a direct negative effect on the parasites.[50]

After the caterpillar becomes a butterfly, the toxin shift to different parts of the body. Since many birds attack the wings of the butterfly, having three times the cardiac glycosides in the wings leaves predators with a very foul taste, and may prevent them from ever ingesting the body of the butterfly.[48] In order to combat predators that remove the wings only to ingest the abdomen, monarchs keep the most potent cardiac glycosides in their abdomens.[51]

Monarch toxins are pharmacologically similar to digitalis and produce extremely similar results in experimental settings.[48] In the wild, the toxins cause many birds to experience intense discomfort and vomiting. Many birds find monarchs unappetizing and quickly begin recognizing their distinct colors and avoiding them as food sources.


Monarchs share the defense of noxious taste with the similar-appearing viceroy butterfly in what is perhaps one of the most well-known examples of mimicry. Though long purported to be an example of Batesian mimicry, the viceroy is actually reportedly more unpalatable than the monarch, making this a case of Müllerian mimicry.[52]

The monarch (left) and viceroy (right) butterflies exhibiting Müllerian mimicry

Human Interactions[edit]

A monarch male tagged with an identification sticker

The monarch is the state insect of Alabama,[53] Idaho,[54] Illinois,[55] Minnesota,[56] Texas,[57] Vermont,[58] and West Virginia.[59] It was nominated in 1990 as the national insect of the United States of America.[60] but the legislation did not pass.[61]

Monarchs can be attracted by cultivating a butterfly garden with specific milkweed species and nectar plants. Efforts are underway to establish these Monarch Waystations.[62] Monarchs are raised as a hobby and for educational purposes.[63][64] Butterfly farmers raise Monarchs and ship them to individuals and organizations to be released at a wedding or funeral, for example.[65] The release of captive bred Monarchs remains controverial.[66][67]

An IMAX film, Flight of the Butterflies, describes the story of the Urquharts, Brugger and Trail to then unknown migration to Mexican overwintering areas.[68]

Sanctuaries and reserves have been created at over-wintering locations in Mexico and California to limit habitat destruction. These sites can generate significant tourism revenue. [69]

Some organizations, such as the Cape May Bird Observatory, have monarch identification tagging programs. Plastic stickers are placed on the wing of the insect with identification information. Tracking information is used to study their migration patterns, including how far and where they fly.[70]



Although monarchs feed on milkweed, variations in the quantity of cardiac glycosides exist between species, individuals, and even parts of the host plant. The levels of toxins in adult monarchs reflect the levels in their host plants. This means some monarchs are not foul-tasting, but are Batesian or automimics. Some species of predators have learned to measure the toxins by taste and reject butterflies with high cardiac glycosides contents, eating only the ones with low contents.

Monarchs also contain cardiac glycosides in their bodies from the Asclepias plants the caterpillars eat. Overwintering monarchs in Mexico are often preyed upon by Black-headed Grosbeaks, which are immune to that toxin. Other birds, such as orioles and jays, have learned to eat only the thoracic muscles and abdominal contents because these contain less poison than the rest of the body.[19] Some mice are also able to withstand large doses of the poison. Over time, overwintering adults become less poisonous, thus making them more vulnerable to predators. In Mexico, about 14% of the overwintering monarchs are eaten by birds and mice.[37]

In the butterfly, the cardiac glycosides are concentrated in the abdomen and wings. Some species of predators differentiate these parts and consume only the most palatable ones.[71] Bird predators include brown thrashers, grackles, robins, cardinals, sparrows, scrub jays and pinyon jays.[71]

In North America, eggs and first instar larvae of the monarch are eaten by larvae and adults of the introduced Asian lady beetle (Harmonia axyridis).[72]

Another predator of the monarchs is the Chinese mantid (Tenodera sinensis). Chinese mantids have been shown to have adapted to handle monarch caterpillars to reduce poisonous effects. Chinese mantids are capable of identifying monarch larvae and approach them in a different manner than other caterpillars.[73] Upon encountering a monarch caterpillar, Chinese mantis will chew open the integument to let the gut fall out. Once the gut is removed, they will proceed to consume the rest of the body. This is effective as monarch caterpillars have much higher levels of cardenolide content in their guts than in the rest of their bodies. By practicing this method of ingestion, Chinese mantids are able to avoid the gut which contains high levels of milkweed particles. This practice has also been documented in some other predators as well.

Several birds have also adapted various methods that allow them to ingest monarchs without experiencing the ill effects associated with the cardiac glycosides. The oriole is able to eat the monarch through an exaptation of its feeding behavior that gives it the ability to identify cardenolides by taste and reject them.[74] The grosbeak, on the other hand, has adapted the ability an insensitivity to secondary plant poisons which allows it to ingest monarchs without vomiting. As a result, orioles and grosbeaks will periodically have high levels of cardenolides in their bodies, and they will be forced to go on periods of reduced monarch consumption. This cycle of predation effectively reduces the potential predation of monarchs by 50 percent and indicates that monarch aposematism has a legitimate purpose.[74]

White morph of the monarch in Hawaii

On Oahu, a white morph of the monarch has emerged. This is because of the introduction, in 1965 and 1966, of two bulbul species, Pycnonotus cafer and Pycnonotus jocosus. They are now the most common insectivore birds, and probably the only ones preying on insects as large as the monarch. Monarchs in Hawaii are known to have low cardiac glycoside levels, but the birds may also be tolerant of the chemical. The two species hunt the larvae and some pupae from the branches and undersides of leaves in milkweed bushes. The bulbuls also eat resting and ovipositing adults, but rarely flying ones. Because of its colour, the white morph has a higher survival rate than the orange one. This is either because of apostatic selection (i.e. the birds have learned the orange monarchs can be eaten), because of camouflage (the white morph matches the white pubescence of milkweed or the patches of light shining through foliage), or because the white morph does not fit the bird's search image of a typical monarch, so is thus avoided.[75]


Parasites include the tachinid flies Sturmia convergens[76] and Lesperia archippivora. Lesperia-parasitized larvae complete their moult and suspend, but die before pupation. At that time, one white maggot comes out of the larvae, suspended by a silken thread. The maggot then forms a brown pupa on the ground.[77]

The bacterium Micrococcus flacidifex danai also infects the larvae and causes “black death”. As usual, just before pupation, the larvae migrate to a horizontal surface. They die a few hours later, attached only by one pair of prolegs, with the thorax and abdomen hanging limp. The body turns black shortly after. The bacterium Pseudomonas aeruginosa has no invasive powers, but causes secondary infections in weakened insects. It is a common cause of death in laboratory-reared insects.[77]

The protozoan Ophryocystis elektroscirrha is another parasite of the monarch. It infects the subcutaneous tissues and propagates by spores formed during the pupal stage. The spores are found over all of the body of infected butterflies, with the greatest number on the abdomen. These spores are passed, from female to caterpillar, when spores rub off during egg-laying, and are then ingested by caterpillars. Severely infected individuals are weak, unable to expand their wings, or unable to eclose, and have shortened lifespans, but probably occur at low frequencies in nature. This is not the case in laboratory or commercial rearing, where after a few generations, all individuals can be infected.[78]

Confusion of host plants[edit]

The black swallow-wort is problematic for monarchs in North America. Monarchs lay their eggs on these relatives of native milkweeds because they produce stimuli similar to milkweed. Once the eggs hatch, the caterpillars are poisoned by the toxicity of this invasive plant from Europe.[citation needed]

Population decline[edit]

The alarming decrease in the monarch butterfly population has been linked to the decrease in the milkweed plant (Asclepias)—a primary food for monarchs—from herbicide use in the butterfly’s reproductive and feeding areas. The destruction of common milkweed has effectively eliminated the food source from most of the habitat monarchs used to use.[79] Common milkweed is suseptible to the use of herbicides. Varietals do exist, however, (see Human Interactions) that can be successfully planted in gardens and other areas to help mitigate habitat loss in the wild.[80]

Genetically Modified Crops[edit]

Genetically modified crops (GMCs), specifically corn and soybeans, now enable farmers to use herbicides to selectively eliminate milkweed that previously grew between the rows of food crops. These crops are genetically modified to be resistant to the effect of the herbicide glyphosate. The increased planting of glyphosate-resistant crops has had the side of effect of reducing milkweeds, which has been correlated with the decline in Monarch populations between 1999 and 2010.[81] Chip Taylor, director of Monarch Watch at the University of Kansas, said the Midwest milkweed habitat "is virtually gone" with 120–150 million acres lost.[82][83]

The journal Nature proposed that pollen from genetically modified maize could deposit onto larval food plants, Asclepias spp. (milkweed), increasing mortality of the larva.[84]

Loss of Overwintering Habitat[edit]

The area of forest occupied by overwintering monarch butterflies in Mexico reached its lowest level in two decades in 2013. According to a survey carried out during the 2012–2013 winter season by the WWF-Telcel Alliance, and Mexico’s National Commission of Protected Areas (CONAP), the nine hibernating colonies occupy a total area of 2.94 acres of forest—representing a 59% decrease from the 2011–2012 survey of 7.14 acres.[citation needed]

The same survey in 2012-2013 showed the decline is continuing. There were only seven colonies occupying 0.67 hectares (1.66 acres), the third consecutive record low since record-keeping began in 1995-1996. It represents a 44% decrease from the previous year, a 76% decrease from 2011-2012 and a 92% decrease compared to the 1996-1997 count.


Climate variations during the fall and summer affect butterfly reproduction. Rainfall, and freezing temperatures affect milkweed growth and the survival of migrating adult butterflies.[citation needed]Omar Vidal, director general of WWF-Mexico, said “The monarch’s lifecycle depends on the climatic conditions in the places where they breed. Eggs, larvae and pupae develop more quickly in milder conditions. Temperatures above 95°F can be lethal for larvae, and eggs dry out in hot, arid conditions, causing a drastic decrease in hatch rate.” [85] [86]

Concerned individuals governmental agencies, and organizations have made efforts to restore milkweed habitats to provide nectar and foodplants.[87][88][89]


A 273-million base pair draft sequence of the monarch butterfly genome was published in 2011, including a set of 16,866 protein-coding genes. Comparison to the sequence of the silk moth Bombyx mori reveals the Lepidoptera as a relatively fast-evolving order. The monarch genome provides a number of insights into the butterfly's migratory behaviour, including the molecular underpinnings of the circadian clock and juvenile hormone pathway, as well as a suite of microRNAs that are differentially expressed between summer and migratory monarchs.[90][91][92]

See also[edit]


  1. ^ Committee On Generic Nomenclature, Royal Entomological Society of London; Of Entomology, British Museum (Natural History) Dept (2007-05-23) [1934]. The Generic Names of British Insects. Royal Entomological Society of London Committee on Generic Nomenclature, Committee on Generic Nomenclature. British Museum (Natural History). Dept. of Entomology. p. 20. Retrieved 2008-06-04. 
  2. ^ Scudder, Samuel H.; William M. Davis, Charles W. Woodworth, Leland O. Howard, Charles V. Riley, Samuel W. Williston (1989). The butterflies of the eastern United States and Canada with special reference to New England. The author. p. 721. ISBN 0-665-26322-8. Retrieved 2008-06-04. 
  3. ^ "Monarch Butterfly". Retrieved March 26, 2014. 
  4. ^ a b Garber, Steven D. (1998). The Urban Naturalist. Courier Dover Publications. pp. 76–79. ISBN 0-486-40399-8. Retrieved 2008-05-26. 
  5. ^ a b "Monarch, Danaus plexippus". Retrieved 2008-08-27. 
  6. ^ Adams, Jean Ruth (1992). Insect Potpourri: Adventures in Entomology. CRC Press. pp. 28–29. ISBN 1-877743-09-7. Retrieved 2008-05-21. 
  7. ^ Linnaeus, Carl (1758). Systema Naturae (in Latin) 1. Stockholm: Laurentius Salvius. p. 471. OCLC 174638949. Retrieved 2012-06-05. 
  8. ^ a b Smith, David A.; Gugs Lushai and John A. Allen (June 2005). "A classification of Danaus butterflies (Lepidoptera: Nymphalidae) based upon data from morphology and DNA" (PDF). Zoological Journal of the Linnean Society 144 (2): 191–212. doi:10.1111/j.1096-3642.2005.00169.x. Retrieved 2008-05-19. 
  9. ^ Hay-Roe, Miriam M. et al. (2007), Pre- and postzygotic isolation and Haldane rule effects in reciprocal crosses of Danaus erippus and Danaus plexippus (Lepidoptera: Danainae), supported by differentiation of cuticular hydrocarbons, establish their status as separate species, Biological Journal of the Linnean Society 91: 445–453.
  10. ^ Linnaeus, C. (1758). Systema Naturae ed. X: 467 (in BHL)
  11. ^ Linnaeus divided his large genus Papilio, containing all known butterfly species, into what we would now call subgenera. The Danai festivi formed one of the 'subgenera', containing colourful species, as opposed to the Danai candidi, containing species with bright white wings. Linnaeus wrote: "Danaorum Candidorum nomina a filiabus Danai Aegypti, Festivorum a filiis mutuatus sunt." (= The names of the Danai candidi have been derived from the daughters of Danaus, those of the Danai festivi from the sons of Aegyptus).
  12. ^ Robert Michael Pyle suggested Danaus is a masculinised version of Danaë (Greek Δανάη), Danaus’s great-great-granddaughter, to whom Zeus came as a shower of gold, which seemed to him a more appropriate source for the name of this butterfly (Pyle, Robert Michael (2001). Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin Books. pp. 148–149. ISBN 0-618-12743-7. Retrieved 2013-03-20. ). He masculinized the genus name because it had to agree in gender with the species name. If the species-group name is not a noun in apposition, Pyle could have been right and the genus name and specific epithet have to agree in gender, but in that case it is the specific epithet and not the genus name, that is to be altered. In the case of Danaus plexippus, however, the specific epithet is a noun in apposition, formed from a personal name in the nominative case, which should not be altered (see ICZN art. 31.1 and art. 32.3). If, instead of Danaus, Danaë had been intended, the name would simply have been Danae plexippus. Moreover, in Systema Naturae, there is a very strong connection of the names with Danaus, and not a single one with Danaë.
  13. ^ a b c Braby, Michael F. (2000). Butterflies of Australia: Their Identification, Biology and Distribution. CSIRO Publishing. pp. 597–599. ISBN 0-643-06591-1. Retrieved 2008-05-26. 
  14. ^ The White Monarch, Lawrence Gibbs and Orley R. Taylor, Department of Entomology, University of Kansas, June 1998
  15. ^ Darby, Gene (1958). What is a Butterfly. Chicago: Benefic Press. p. 10. 
  16. ^ Oberhauser, Karen S.; Michelle J. Solensky (2004). The Monarch Butterfly: Biology and Conservation. Cornell University Press. p. 3. ISBN 0-8014-4188-9. Retrieved 2008-06-03. 
  17. ^ "Monarch Life Cycle". Biology. Monarch Watch. Retrieved 2008-06-06. 
  18. ^ a b David L. Wagner (2005). Caterpillars of Eastern North America. Princeton University Press, Princeton, NJ. ISBN 0-691-12144-3
  19. ^ a b c d James A. Scott (1986). The Butterflies of North America. Stanford University Press, Stanford, CA. ISBN 0-8047-2013-4
  20. ^ "Wanderer Butterfly". Online Learning Resources. School of Biological Sciences, The University of Sydney. Retrieved 2010-07-15. 
  21. ^ Haeger, Fernandez (2012). "Presentation of a paper at the Monarch Biology and Conservation Meeting: Monarch butterflies in southern Spain" (PDF). Minnesota: Retrieved February 14, 2014. 
  22. ^ UK Butterflies – Monarch – Danaus plexippus from UK Butterflies
  23. ^ Gerald McCormack (7-12-2005). "Cook Islands' Largest Butterfly - the Monarch". Cook Islands Biodiversity. 
  24. ^ Chill turns monarchs north; Cold weather flips butterflies’ migratory path March 23, 2013; Vol.183 #6 Science News
  25. ^ Pyle, Robert Michael, "National Audubon Society Field Guide to North American Butterflies", pp. 712-713, Alfred A. Knopf, New York, ISBN 0-394-51914-0
  26. ^ a b "Monarch Migration Studies". Retrieved March 26, 2014. 
  27. ^ Gugliotta, Guy (2003): Butterflies Guided By Body Clocks, Sun Scientists Shine Light on Monarchs' Pilgrimage. Washington Post, May 23, 2003, page A03. Retrieved 2006-JAN-07.
  28. ^ Merlin, C; Gegear, RJ; Reppert, SM. (2009). "Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies". Science 325 (5948): 1700–1704. doi:10.1126/science.1176221. PMC 2754321. PMID 19779201. 
  29. ^ Kyriacou, CP. (2009). "Unraveling Traveling". Science 325 (5948): 1629–1630. doi:10.1126/science.1178935. PMID 19779177. 
  30. ^ Robert J. Gegear, Lauren E. Foley, Amy Casselman & Steven M. Reppert (2010). "Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism" (PDF). Nature 463 (7282): 804–807. doi:10.1038/nature08719. PMC 2820607. PMID 20098414. 
  31. ^ "Monarch butterflies make use of a chemical magnetic compass". 2010-01-27. doi:10.1038/nature08719. Retrieved 2013-08-15. 
  32. ^ Mouritsen (April 30, 2014). "An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators (pre-published paper provided by author)". PNAS 110 (18). 
  33. ^ Haeger, Fernandez (2012). "Presentation of a paper at the Monarch Biology and Conservation Meeting: Monarch butterflies in southern Spain" (PDF). Minnesota: Retrieved February 14, 2014. 
  34. ^ "Wanderer Butterfly". Australian Museum: nature culture discover. Australian Museum, Sydney, Australia. Retrieved 2010-07-15. 
  35. ^ Malcolm, S. (2012). "Presentation of a paper at the Monarch Biology and Conservation Meeting: Migration and host plant use of the southern monarch, Danaus erippus" (PDF). Minnesota: Retrieved February 12, 2014. 
  36. ^ Davis, A.K (2009). "Wing color of monarch butterflies (Danaus plexippus) in eastern North America across life stages: migrants are 'redder' than breeding and overwintering stages". Psyche 2009: 1–5. doi:10.1155/2009/705780. Retrieved 19 December 2010. 
  37. ^ a b Rick Cech and Guy Tudor (2005). Butterflies of the East Coast. Princeton University Press, Princeton, NJ. ISBN 0-691-09055-6
  38. ^ a b c David C. Iftner, John A. Shuey, and John C. Calhoun (1992). Butterflies and Skippers of Ohio. College of Biological Sciences and The Ohio State University. ISBN 0-86727-107-8
  39. ^ a b "ADW: Danaus plexippus: Information". Retrieved 2008-08-27. 
  40. ^ Emmel. Thomas C., "Florida's Fabulous Butterflies", p 44, World Publications, 1997, ISBN 0-911977-15-5
  41. ^ a b Solensky,M. J. and K. S. Oberhauser. 2004. Behavioral and genetic components of male mating success in monarchbutterflies. Pp. 61-68. In: Oberhauser, K.S. and M.J. Solensky, eds. The MonarchButterfly: Biology and Conservation. Cornell University Press. Ithaca NY.
  42. ^ a b Frey, D., K.L.H. Leong, E. Peffer,R.K. Smidt, K.S. Oberhauser. 1998. Mating patterns of overwintering monarch butterflies (Danaus plexippus (L.)) inCalifornia. J. Lepid. Soc. 52: 84-97
  43. ^ "Monarch Butterfly Life Cycle and Migration". National Geographic Education. 2008-10-24. Retrieved 2013-08-15. 
  44. ^ a b c Oberhauser, K.S. 1989. Effects of spermatophores on male and female monarch butterfly reproductive success. Behav. Ecol. Sociobiol. 25:237-246.
  45. ^ Oberhauser, Karen S. Male monarch butterfly spermatophore mass and mating strategies, Animal Behaviour 36 (5, September–October 1988). pp. 1384–1388. ISSN 0003-3472. 
  46. ^ "Male monarch butterfly spermatophore mass and mating strategies". 1988-10-31. Retrieved 2014-03-24. 
  47. ^ a b Solensky,M. J., and K. S. Oberhauser. "Sperm Precedence in Monarch Butterflies (Danaus Plexippus)." BehavioralEcology 20.2 (2009): 328-34. Print.
  48. ^ a b c Parsons, J.A. (1965). "A Digitallis-like Toxin in the Monarch Butterfly Danaus Plexippus L". J. Physiol (178): 290–304. 
  49. ^ Malcolm, S.B.; L.P. Brower (1989). "Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly". Experientia 45 (3): 284–295. doi:10.1007/BF01951814. 
  50. ^ a b de Rood, J.C. (2011). "Virulence evolution in response to anti-infection resistance: toxic food plants can select for virulent parasites of monarch butterflies". Journal of Evolutionary Biology 4: 712–722. 
  51. ^ Glazier, Lincoln; Susan Glazier (1975). "Localization of Heart Poisons in the Monarch Butterfly". Science 188 (4183): 19–25. Bibcode:1975Sci...188...19B. doi:10.1126/science.188.4183.19. PMID 17760150. 
  52. ^ Ritland, D.; L. P. Brower (1991). "The viceroy butterfly is not a Batesian mimic". Nature 350 (6318): 497–498. doi:10.1038/350497a0. Retrieved 2008-02-23. "Viceroys are as unpalatable as monarchs, and significantly more unpalatable than queens from representative Florida populations." 
  53. ^ "Official Alabama Insect". Alabama Emblems, Symbols and Honors. Alabama Department of Archives & History. 2001-07-12. Retrieved 2007-03-19. 
  54. ^ "Idaho Symbols, Insect: Monarch Butterfly". Idaho State Symbols, Emblems, and Mascots. SHG resources, state handbook & guide. Retrieved 2008-03-26. 
  55. ^ "State Symbol: Illinois Official Insect — Monarch Butterfly (Danaus plexippus)". [Illinois] State Symbols. Illinois State Museum. Retrieved 2008-03-26. 
  56. ^ "Minnesota State Symbols" (PDF). Minnesota House of Representatives. Retrieved 2008-03-26. 
  57. ^ "Texas State Symbols". The Texas State Library and Archives. Retrieved 2008-03-26. 
  58. ^ "(Vermont) State Butterfly". Vermont Department of Libraries. Archived from the original on 2008-05-18. Retrieved 2008-03-26. 
  59. ^ "West Virginia Statistical Information, General State Information" (PDF). Official West Virginia Web Portal. Archived from the original on 2008-04-11. Retrieved 2008-03-26. 
  60. ^ Wade, Nicholas (1990-06-01). "Choosing a National Bug". The New York Times. Retrieved 2008-03-26. 
  61. ^ "Frequently Asked Questions on Entomology". Entomological Society of America. Retrieved 2008-03-26. 
  62. ^ "Monarch Watch Waystation Program". Retrieved 2014-02-20. 
  63. ^ "Monarch Watch". Retrieved 2014-02-20. 
  64. ^ "Monarch Watch". The Kansas Biological Survey, Univ of Kansas. 2008-05-27. Retrieved 2008-05-27. 
  65. ^ "International Butterfly Breeders Association". Retrieved 2014-02-20. 
  66. ^ "Code Of Practice". Retrieved 2014-02-20. 
  67. ^ "What The Experts Say". Retrieved 2014-02-20. 
  68. ^ "Flight of the Butterflies". Reuben H. Fleet Science Center. Retrieved 18 February 2013. 
  69. ^ "Saving Butterflies: Insect Ecologist Spearheads Creation of Oases for Endangered Butterflies". ScienceDaily. 2005-01-01. Retrieved 2008-05-27. 
  70. ^ "Monarch Monitoring Project". Cap May Bird Observatory. 2008. Retrieved 2008-12-05. 
  71. ^ a b Barbosa, Pedro; Deborah Kay Letourneau (1988). "5". Novel Aspects of Insect-plant Interactions. Wiley-Interscience. pp. 29–31. ISBN 0-471-83276-6. Retrieved 2008-05-12. 
  72. ^ Koch, R. L.; W. D. Hutchison, R. C. Venette and G. E. Heimpel (October 2003). "Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae)". Biological Control 28 (2): 265–270. doi:10.1016/S1049-9644(03)00102-6. Retrieved 2008-04-23. 
  73. ^ Rafter, Jamie; Anurag Agruwal, Evan Preisser (2013). "Chinese mantids gut toxic monarch caterpillars: avoidance of prey defense?". Ecological Entomology (38): 78–82. 
  74. ^ a b Brower, Lincoln (1988). "Avian Predation on the Monarch Butterfly and Its Implications for Mimicry Theory". American Society of Naturalists 131: S4–S6. doi:10.1086/284763. 
  75. ^ Stimson, John; Mark Berman (1990). "Predator induced colour polymorphism in Danaus plexippus L. (Lepidoptera: Nymphalidae) in Hawaii". Heredity 65 (3): 401–406. doi:10.1038/hdy.1990.110. Lay summary. 
  76. ^ Clarke, A.R.; M.P. Zalucki (2001). "Taeniogonalos raymenti Carmean & Kimsey (Hymenoptera: Trigonalidae) reared as a hyperparasite of Sturmia convergens (Weidemann) (Diptera: Tachinidae), a primary parasite of Danaus plexippus (L.) (Lepidoptera: Nymphalidae)". Pan-Pacific Entomologist 77 (?): 68–70. 
  77. ^ a b Brewer, Jo; Gerard M. Thomas (1966). "Causes of death encountered during rearing of Danaus plexippus (Danaidae)" (PDF). Journal of the Lepidopterist's Society 20 (4): 235–238. Retrieved 2008-04-13. Lay summary. 
  78. ^ Leong, K. L. H.; M. A. Yoshimura, H. K. Kaya and H. Williams (1997). "Instar Susceptibility of the Monarch Butterfly (Danaus plexippus) to the Neogregarine Parasite, Ophryocystis elektroscirrha". Journal of Invertebrate Pathology 69 (1): 79–83. doi:10.1006/jipa.1996.4634. PMID 9028932. Lay summary. 
  79. ^ "Tracking the Causes". 
  80. ^ "Habitat For Arthropods". 
  81. ^ Pleasants, John M.; Oberhauser, Karen S. (2012). "Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population". Insect Conservation and Diversity. 
  82. ^ Wines, Michael, Monarch Migration Plunges to Lowest Level in Decades March 13, 2013 NYT
  83. ^ "Yale Environment 360". 
  84. ^ John E. Losey, Linda S. Rayor & Maureen E. Carter (1999). "Transgenic pollen harms monarch larvae" (PDF). Nature 399 (6713): 214. doi:10.1038/20338. PMID 10353241. 
  85. ^ WWF,, March 14, 2013
  86. ^ WWF,, January 29, 2014
  87. ^ "Habitat For Arthropods". 
  88. ^ "Monarch Waystations". Retrieved March 25, 2014. 
  89. ^ "North American Leaders Urged to Restore Monarch Butterfly's Habitat". Retrieved March 25, 2014. 
  90. ^ Zhan S, Merlin C, Boore JL, Reppert SM (November 2011). "The Monarch Butterfly Genome Yields Insights into Long-Distance Migration". Cell 147 (5): 1171–85. doi:10.1016/j.cell.2011.09.052. PMC 3225893. PMID 22118469. 
  91. ^ Stensmyr MC, Hansson BS (November 2011). "A Genome Befitting a Monarch". Cell 147 (5): 970–2. doi:10.1016/j.cell.2011.11.009. PMID 22118454. 
  92. ^ Johnson, Carolyn Y. (23 November 2011). "Monarch butterfly genome sequenced". The Boston Globe (Boston, MA). Retrieved 9 January 2012. 

External links[edit]