Meteor shower

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search
Night sky during Orionid meteor shower
Four hour time lapse exposure of sky
Short animation of single meteor

A meteor shower is a celestial event in which a number of meteors are observed to radiate from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Intense or unusual meteor showers are known as meteor outbursts and meteor storms, which may produce greater than 1,000 meteors an hour.[1]


The radiant point

Meteor shower on chart

Because meteor shower particles are all traveling in parallel paths, and at the same velocity, they will all appear to an observer below to radiate away from a single point in the sky. This radiant point is caused by the effect of perspective, similar to railroad tracks converging at a single vanishing point on the horizon when viewed from the middle of the tracks. Meteor showers are almost always named after the constellation from which the meteors appear to originate. This "fixed point" slowly moves across the sky during the night due to the Earth turning on its axis, the same reason the stars appear to slowly march across the sky. The radiant also moves slightly from night to night against the background stars (radiant drift) due to the Earth moving in its orbit around the sun. See "IMO" Meteor Shower Calendar 2007 (International Meteor Organization) for maps of drifting "fixed points." The radiant must be above the observer's local horizon in order for meteors from that particular shower to be visible.

Meteor showers are named after the nearest bright star with a Greek or Roman letter assigned that is close to the radiant position at the peak of the shower, whereby the declension of the Latin possessive form is replaced by "id" or "ids". Hence, meteors radiating from near the star delta Aquarii (declension "-i") are called delta Aquariids. The International Astronomical Union's Task Group on Meteor Shower Nomenclature and the IAU's Meteor Data Center keep track of meteor shower nomenclature and which showers are established.

The origin of meteoroid streams

Comet Encke's meteoroid trail is the diagonal red glow
Meteoroid trail between fragments of Comet 73P

A meteor shower is the result of an interaction between a planet, such as Earth, and streams of debris from a comet. Comets can produce debris by water vapor drag, as demonstrated by Fred Whipple in 1951,[2] and by breakup. Whipple envisioned comets as "dirty snowballs," made up of rock embedded in ice, orbiting the Sun. The "ice" may be water, methane, ammonia, or other volatiles, alone or in combination. The "rock" may vary in size from that of a dust mote to that of a small boulder. Dust mote sized solids are orders of magnitude more common than those the size of sand grains, which, in turn, are similarly more common than those the size of pebbles, and so on. When the ice warms and sublimates, the vapor can drag along dust, sand, and pebbles. Each time a comet swings by the Sun in its orbit, some of its ice vaporizes and a certain amount of meteoroids will be shed. The meteoroids spread out along the entire orbit of the comet to form a meteoroid stream, also known as a "dust trail" (as opposed to a comet's "dust tail" caused by the very small particles that are quickly blown away by solar radiation pressure).

Recently, Peter Jenniskens[3] has argued that most of our short-period meteor showers are not from the normal water vapor drag of active comets, but the product of infrequent disintegrations, when large chunks break off a mostly dormant comet. Examples are the Quadrantids and Geminids, which originated from a breakup of asteroid-looking objects 2003 EH1 and 3200 Phaethon, respectively, about 500 and 1000 years ago. The fragments tend to fall apart quickly into dust, sand, and pebbles, and spread out along the orbit of the comet to form a dense meteoroid stream, which subsequently evolves into Earth's path.

The dynamical evolution of meteoroid streams

Shortly after Whipple predicted that dust particles travelled at low speeds relative to the comet, Milos Plavec was the first to offer the idea of a dust trail, when he calculated how meteroids, once freed from the comet, would drift mostly in front of or behind the comet after completing one orbit. The effect is simple orbital mechanics – the material drifts only a little laterally away from the comet while drifting ahead or behind the comet because some particles make a wider orbit than others.[3] These dust trails are sometimes observed in comet images taken at mid infrared wavelengths (heat radiation), where dust particles from the previous return to the Sun are spread along the orbit of the comet (see figures).

The gravitational pull of the planets determines where the dust trail would pass by Earth orbit, much like a gardener directing a hose to water a distant plant. Most years, those trails would miss the Earth altogether, but in some years the Earth is showered by meteors. This effect was first demonstrated from observations of the 1995 alpha Monocerotids,[4][5] and from earlier not widely known identifications of past earth storms.

Diagram from 1872

In the 1890s, Irish astronomer George Johnstone Stoney (1826–1911) and British astronomer Arthur Matthew Weld Downing (1850–1917), were the first to attempt to calculate the position of the dust at Earth's orbit. They studied the dust ejected in 1866 by comet 55P/Tempel-Tuttle in advance of the anticipated Leonid shower return of 1898 and 1899. Meteor storms were anticipated, but the final calculations showed that most of the dust would be far inside of Earth's orbit. The same results were independently arrived at by Adolf Berberich of the Königliches Astronomisches Rechen Institut (Royal Astronomical Computation Institute) in Berlin, Germany. Although the absence of meteor storms that season confirmed the calculations, the advance of much better computing tools was needed to arrive at reliable predictions.

In 1985, E. D. Kondrat'eva and E. A. Reznikov of Kazan State University first correctly identified the years when dust was released which was responsible for several past Leonid meteor storms. In anticipation of the 1999 Leonid storm, Robert H. McNaught[6] David Asher,[7] and Finland's Esko Lyytinen were the first to apply this method in the West.[8][9] Peter Jenniskens has published predictions for future dust trail encounters, resulting in meteor storms or meteor outbursts for the next 50 years.[3] Jérémie Vaubaillon continues to update predictions based on observartions each year for The Institut de Mecanique Celeste et de Calcul des Ephemerides (IMCCE).[10]

Over longer periods of time, the dust trails can evolve in complicated ways. For example, the orbits of some repeating comets, and meteoroids leaving them, are in resonant orbits with Jupiter or one of the other large planets – so many revolutions of one will equal another number of revolutions of the other. This creates a shower component called a filament.

A second effect is a close encounter with a planet. When the meteoroids pass by Earth, some are accelerated (making wider orbits around the Sun), others are decelerated (making shorter orbits), resulting in gaps in the dust trail in the next return (like opening a curtain, with grains piling up at the beginning and end of the gap). Also, Jupiter's perturbation can change sections of the dust trail dramatically, especially for short period comets, when the grains approach the big planet at their furthest point along the orbit around the Sun, moving most slowly. As a result, the trail has a clumping, a braiding or a tangling of crescents, of each individual release of material.

The third effect is that of radiation pressure which will push less massive particles into orbits further from the sun – while more massive objects (responsible for bolides or fireballs) will tend to be affected less by radiation pressure. This makes some dust trail encounters rich in bright meteors, others rich in faint meteors. Over time, these effects disperse the meteoroids and create a broader stream. The meteors we see from these streams are part of annual showers, because Earth encounters those streams every year at much the same rate.

When the meteoroids collide with other meteoroids in the zodiacal cloud, they lose their stream association and become part of the "sporadic meteors" background. Long since dispersed from any stream or trail, they form isolated meteors, not a part of any shower. These random meteors will not appear to come from the radiant of the main shower.

Famous meteor showers

Perseid and Leonid meteor showers

Leonids from space

The most visible meteor shower in most years are the Perseids, which peak on 12 August of each year at over one meteor per minute. A useful tool to calculate how many meteors per hour are visible from your observing location is found here:

The Leonids meteor shower peaks around 17 November of each year. Approximately every 33 years, the Leonid shower produces a meteor storm, peaking at rates of thousands of meteors per hour. Leonid storms gave birth to the term meteor shower when it was first realised, during the November 1833 storm, that the meteors radiated from near the star Gamma Leonis. The last Leonid storms were in 1999, 2001 (two), and 2002 (two). Before that, there were storms in 1767, 1799, 1833, 1866, 1867, and 1966. When the Leonid shower is not storming it is less active than the Perseids.

Other meteor showers

Official names are given in the International Astronomical Union meteor shower list.[11]

ShowerTimeParent object
QuadrantidsEarly JanuaryThe same as the parent object of minor planet 2003 EH1,[12] and perhaps comets C/1490 Y1 and C/1385 U1 [13]
Lyridslate AprilComet Thatcher
Pi Puppids (periodic)late AprilComet 26P/Grigg-Skjellerup
Eta Aquariidsearly MayComet 1P/Halley
Arietidsmid JuneComet 96P/Machholz, Marsden and Kracht comet groups complex [1][14]
June Bootids (periodic)late JuneComet 7P/Pons-Winnecke
Southern Delta Aquariidslate JulyComet 96P/Machholz, Marsden and Kracht comet groups complex [1][14]
Alpha Capricornidslate JulyComet 169P/NEAT[15]
Perseidsmid-AugustComet 109P/Swift-Tuttle
Kappa Cygnidsmid-AugustMinor planet 2008 ED69[16]
Aurigids (periodic)early SeptemberComet C/1911 N1 (Kiess)[17]
Draconids (periodic)early OctoberComet 21P/Giacobini-Zinner
Orionidslate OctoberComet 1P/Halley
Southern Tauridsearly NovemberComet 2P/Encke
Northern Tauridsmid-NovemberMinor planet 2004 TG10 and others[1][18]
Andromedids (periodic)mid-NovemberComet 3D/Biela[19]
Alpha Monocerotids (periodic)mid-Novemberunknown[20]
Leonidsmid-NovemberComet 55P/Tempel-Tuttle
Phoenicids (periodic)early-DecemberComet D/1819 W1 (Blanpain)[21]
Geminidsmid-DecemberMinor planet 3200 Phaethon[22]
Ursidslate DecemberComet 8P/Tuttle[23]

Extraterrestrial meteor showers

Mars meteor by MER Spirit rover

Any other solar system body with a reasonably transparent atmosphere can also have meteor showers. For instance, Mars is known to have meteor showers,[24] although these are different from the ones seen on Earth because the different orbits of Mars and Earth intersect orbits of comets in different ways.

Although the Martian atmosphere has less than one percent of the density of Earth's at ground level, at their upper edges, where meteoroids strike, the two are more similar. Because of the similar air pressure at altitudes for meteors, the effects are much the same. Only the relatively slower motion of the meteoroids due to increased distance from the sun should marginally decrease meteor brightness. This is somewhat balanced in that the slower descent means that Martian meteors have more time in which to ablate.[25]

On March 7, 2004, the panoramic camera on Mars Exploration Rover Spirit recorded a streak which is now believed to have been caused by a meteor from a Martian meteor shower associated with comet 114P/Wiseman-Skiff. A strong display from this shower was expected on December 20, 2007. Other showers speculated about are a "Lambda Geminid" shower associated with the Eta Aquariids of Earth (i.e., both associated with Comet 1P/Halley), a "Beta Canis Major" shower associated with Comet 13P/Olbers, and "Draconids" from 5335 Damocles.[26]

See also


  1. ^ a b c d Jenniskens, P. (2006). Meteor Showers and their Parent Comets. Cambridge University Press. ISBN 978-0-521-85349-1.
  2. ^ Whipple F. L. (1951). A Comet Model. II. Physical Relations for Comets and Meteors. Astrophys. J. 113, 464
  3. ^ a b c Jenniskens P. (2006). Meteor Showers and their Parent Comets. Cambridge University Press, Cambridge, U.K., 790 pp.
  4. ^ Jenniskens P., 1997. Meteor steram activity IV. Meteor outbursts ad the reflex motion of the Sun. Astron. Astrophys. 317, 953–961.
  5. ^ Jenniskens P., Betlem, H., De Lignie, M., Langbroek, M. (1997). The detection of a dust trail in the orbit of an Earth-threatening long-period comet. Astrohys. J. 479, 441–447.
  6. ^ Re: (meteorobs) Leonid Storm? By Rob McNaught,
  7. ^ Blast from the Past Armagh Observatory press release 1999 April 21st.
  8. ^ Royal Astronomical Society Press Notice Ref. PN 99/27, Issued by: Dr Jacqueline Mitton RAS Press Officer]
  9. ^ Voyage through a comet's trail, The 1998 Leonids sparkled over Canada By BBC Science's Dr Chris Riley on board NASA's Leonid mission
  10. ^ IMCCE Prediction page
  11. ^ "List of all meteor showers".
  12. ^ Jenniskens, P. (March 2004). "2003 EH1 is the Quadrantid shower parent comet". Astronomical Journal 127 (5): 3018–3022. Bibcode 2004AJ....127.3018J. doi:10.1086/383213.
  13. ^ Marco Micheli, Fabrizio Bernardi, David J. Tholen (May 16, 2008). "Updated analysis of the dynamical relation between asteroid 2003 EH1 and comets C/1490 Y1 and C/1385 U1". Monthly Notices of the Royal Astronomical Society: Letters 390 (1): L6–L8. arXiv:0805.2452. Bibcode 2008MNRAS.390L...6M. doi:10.1111/j.1745-3933.2008.00510.x.
  14. ^ a b Sekanina, Zdeněk; Chodas, Paul W. (December 2005). "Origin of the Marsden and Kracht Groups of Sunskirting Comets. I. Association with Comet 96P/Machholz and Its Interplanetary Complex". Astrophysical Journal Supplement Series 161 (2): 551. Bibcode 2005ApJS..161..551S. doi:10.1086/497374.
  15. ^ Jenniskens, P.; Vaubaillon, J. (2010). "Minor Planet 2002 EX12 (=169P/NEAT) and the Alpha Capricornid Shower". Astronomical Journal 139 (5): 1822–1830. Bibcode 2010AJ....139.1822J. doi:10.1088/0004-6256/139/5/1822.
  16. ^ Jenniskens, P.; Vaubaillon, J. (2008). "Minor Planet 2008 ED69 and the Kappa Cygnid Meteor Shower". Astronomical Journal 136 (2): 725–730. Bibcode 2008AJ....136..725J. doi:10.1088/0004-6256/136/2/725.
  17. ^ Jenniskens, Peter; Vaubaillon, Jérémie (2007). "An Unusual Meteor Shower on 1 September 2007". EOS Transactions 88 (32): 317–318. Bibcode 2007EOSTr..88..317J. doi:10.1029/2007EO320001.
  18. ^ Porubčan, V.; Kornoš; Williams; Kornoš; Williams (2006). "The Taurid complex meteor showers and asteroids". Contributions of the Astronomical Observatory Skalnaté Pleso 36: 103–117. arXiv:0905.1639. Bibcode 2006CoSka..36..103P.
  19. ^ Jenniskens, P.; Vaubaillon, J. R. M. (September 2007). "3D/Biela and the Andromedids: Fragmenting versus Sublimating Comets". Astronomical Journal (The American Astronomical Society) 134 (3): 1037–1045. Bibcode 2007AJ....134.1037J. doi:10.1086/519074. Retrieved 16 May 2012. edit
  20. ^ Jenniskens, P.; Betlem, H.; De Lignie, M.; Langbroek, M. (1997). "The Detection of a Dust Trail in the Orbit of an Earth-threatening Long-Period Comet". Astrophysical Journal 479: 441. Bibcode 1997ApJ...479..441J. doi:10.1086/303853.
  21. ^ Jenniskens, P.; Lyytinen, E. (2005). "Meteor Showers from the Debris of Broken Comets: D/1819 W1 (Blanpain), 2003 WY25, and the Phoenicids". Astronomical Journal 130 (3): 1286–1290. Bibcode 2005AJ....130.1286J. doi:10.1086/432469.
  22. ^ Brian G. Marsden (1983-10-25). "IAUC 3881: 1983 TB AND THE GEMINID METEORS; 1983 SA; KR Aur". International Astronomical Union Circular. Retrieved 2011-07-05.
  23. ^ Jenniskens, P.; Lyytinen, E.; De Lignie, M.C.; Johannink, C.; Jobse, K.; Schievink, R.; Langbroek, M.; Koop, M. et al. (2002). "Dust Trails of 8P/Tuttle and the Unusual Outbursts of the Ursid Shower". Icarus 159: 197–209. Bibcode 2002Icar..159..197J. doi:10.1006/icar.2002.6855.
  24. ^ Meteor showers at Mars
  25. ^ Can Meteors Exist at Mars?
  26. ^ Meteor Showers and their Parent Bodies

External links