Mariculture

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
Salmon pens off Vestmanna in the Faroe Islands
Fish cages containing salmon in Loch Ailort, Scotland.

Mariculture is a specialized branch of aquaculture involving the cultivation of marine organisms for food and other products in the open ocean, an enclosed section of the ocean, or in tanks, ponds or raceways which are filled with seawater. An example of the latter is the farming of marine fish, including finfish and shellfish e.g.prawns, or oysters and seaweed in saltwater ponds. Non-food products produced by mariculture include: fish meal, nutrient agar, jewellery (e.g. cultured pearls), and cosmetics.

Methods[edit]

Algae[edit]

Shellfish[edit]

Similar to algae cultivation, shellfish can be farmed in multiple ways: on ropes, in bags or cages, or directly on (or within) the intertidal substrate. Shellfish mariculture does not require feed or fertilizer inputs, nor insecticides or antibiotics, making shellfish aquaculture (or 'mariculture') a self-supporting system.[1] Shellfish can also be used in multi-species cultivation techniques, where shellfish can utilize waste generated by higher trophic level organisms.

Open ocean[edit]

Raising marine organisms under controlled conditions in exposed, high-energy ocean environments beyond significant coastal influence, is a relatively new approach to mariculture. Open ocean aquaculture (OOA) uses cages, nets, or long-line arrays that are moored, towed or float freely. Research and commercial open ocean aquaculture facilities are in operation or under development in Panama, Australia, Chile, China, France, Ireland, Italy, Japan, Mexico, and Norway. As of 2004, two commercial open ocean facilities were operating in U.S. waters, raising Threadfin near Hawaii and cobia near Puerto Rico. An operation targeting bigeye tuna recently received final approval. All U.S. commercial facilities are currently sited in waters under state or territorial jurisdiction. The largest deep water open ocean farm in the world is raising cobia 12km off the northern coast of Panama in highly exposed sites.[2][3]

Sea ranching[edit]

The Japanese apply a principle based on operant conditioning and the migratory nature of certain species. The fishermen raise hatchlings in a closely knitted net in a harbor, sounding an underwater horn before each feeding. When the fish are old enough they are freed from the net to mature in the open sea. During spawning season, about 80% of these fish return to their birthplace. The fishermen sound the horn and then net those fish that respond.[citation needed]

Seawater ponds[edit]

In seawater pond mariculture, fish are raised in ponds which receive water from the sea. This has the benefit that the nutrition (e.g. microorganisms) present in the seawater can be used. This is a great advantage over traditional fish farms (e.g. sweet water farms) for which the farmers buy feed (which is expensive). Other advantages are that water purification plants may be planted in the ponds to eliminate the buildup of nitrogen, from fecal and other contamination. Also, the ponds can be left unprotected from natural predators, providing another kind of filtering.[4]

Environmental Effects[edit]

Risks aquaculture 550.jpg

Mariculture has rapidly expanded over the last two decades due to new technology, improvements in formulated feeds, greater biological understanding of farmed species, increased water quality within closed farm systems, greater demand for seafood products, site expansion and government interest.[5][6][7] As a consequence, mariculture has been subject to some controversy regarding its social and environmental impacts.[8][9] Commonly identified environmental impacts from marine farms are:

  1. Wastes from cage cultures;
  2. Farm escapees and invasives;
  3. Genetic pollution and disease and parasite transfer;
  4. Habitat modification.

As with most farming practices, the degree of environmental impact depends on the size of the farm, the cultured species, stock density, type of feed, hydrography of the site, and husbandry methods.[10] The adjacent diagram connects these causes and effects.

Wastes from cage cultures[edit]

Mariculture of finfish can require a significant amount of fishmeal or other high protein food sources.[9] Originally, a lot of fishmeal went to waste due to inefficient feeding regimes and poor digestibility of formulated feeds which resulted in poor feed conversion ratios.[11]

In cage culture, several different methods are used for feeding farmed fish – from simple hand feeding to sophisticated computer-controlled systems with automated food dispensers coupled with in situ uptake sensors that detect consumption rates.[12] In coastal fish farms, overfeeding primarily leads to increased disposition of detritus on the seafloor (potentially smothering seafloor dwelling invertebrates and altering the physical environment), while in hatcheries and land-based farms, excess food goes to waste and can potentially impact the surrounding catchment and local coastal environment.[9] This impact is usually highly local, and depends significantly on the settling velocity of waste feed and the current velocity (which varies both spatially and temporally) and depth.[9][12]

Farm escapees and invasives[edit]

The impact of escapees from aquaculture operations depends on whether or not there are wild conspecifics or close relatives in the receiving environment, and whether or not the escapee is reproductively capable.[12] Several different mitigation/prevention strategies are currently employed, from the development of infertile triploids to land-based farms which are completely isolated from any marine environment.[13][14][15][16] Escapees can adversely impact local ecosystems through hybridization and loss of genetic diversity in native stocks, increase negative interactions within an ecosystem (such as predation and competition), disease transmission and habitat changes (from trophic cascades and ecosystem shifts to varying sediment regimes and thus turbidity).

The accidental introduction of invasive species is also of concern. Aquaculture is one of the main vectors for invasives following accidental releases of farmed stocks into the wild.[17] One example is the Siberian sturgeon (Acipenser baerii) which accidentally escaped from a fish farm into the Gironde Estuary (Southwest France) following a severe storm in December 1999 (5,000 individual fish escaped into the estuary which had never hosted this species before).[18] Molluscan farming is another example whereby species can be introduced to new environments by ‘hitchhiking’ on farmed molluscs. Also, farmed molluscs themselves can become dominate predators and/or competitors, as well as potentially spread pathogens and parasites.[17]

Genetic Pollution and Disease and Parasite Transfer[edit]

One of the primary concerns with mariculture is the potential for disease and parasite transfer. Farmed stocks are often selectively bred to increase disease and parasite resistance, as well as improving growth rates and quality of products.[9] As a consequence, the genetic diversity within reared stocks decreases with every generation - meaning they can potentially reduce the genetic diversity within wild populations if they escape into those wild populations.[11] Such genetic pollution from escaped aquaculture stock can reduce the wild population’s ability to adjust to the changing natural environment. Also, maricultured species can harbour diseases and parasites (e.g., lice) which can be introduced to wild populations upon their escape. An example of this is the parasitic sea lice on wild and farmed Atlantic salmon in Canada.[19] Also, non-indigenous species which are farmed may have resistance to, or carry, particular diseases (which they picked up in their native habitats) which could be spread through wild populations if they escape into those wild populations. Such ‘new’ diseases would be devastating for those wild populations because they would have no immunity to them.

Habitat modification[edit]

With the exception of benthic habitats directly beneath marine farms, most mariculture causes minimal destruction to habitats. However, the destruction of mangrove forests from the farming of shrimps is of concern.[9][12] Globally, shrimp farming activity is a small contributor to the destruction of mangrove forests; however, locally it can be devastating.[9][12] Mangrove forests provide rich matrices which support a great deal of biodiversity – predominately juvenile fish and crustaceans.[12][20][21] Furthermore, they act as buffering systems whereby they reduce coastal erosion, and improve water quality for in situ animals by processing material and ‘filtering’ sediments.[12][20][21]

Others[edit]

In addition, nitrogen and phosphorus compounds from food and waste may lead to blooms of phytoplankton, whose subsequent degradation can drastically reduce oxygen levels. If the algae are toxic, fish are killed and shellfish contaminated.[22][23][24]

Sustainability[edit]

Mariculture development must be sustained by basic and applied research and development in major fields such as nutrition, genetics, system management, product handling, and socioeconomics. One approach is closed systems that have no direct interaction with the local environment.[25] However, investment and operational cost are currently significantly higher than open cages, limiting them to their current role as hatcheries.[22]

Potential Benefits[edit]

Sustainable mariculture promises economic and environmental benefits. Economies of scale imply that ranching can produce fish at lower cost than industrial fishing, leading to better human diets and the gradual elimination of unsustainable fisheries. Maricultured fish are also perceived to be of higher quality than fish raised in ponds or tanks, and offer more diverse choice of species. Consistent supply and quality control has enabled integration in food market channels.[22][23]

Species farmed[edit]

Shellfish/Crustaceans

[2][26]

Scientific literature[edit]

Scientific literature on mariculture can be found in the following journals:

  • Applied and Environmental Microbiology
  • Aquaculture (Journal)
  • Aquaculture Research
  • Journal of Marine Science
  • Marine Resource Economics
  • Ocean Shoreline Management
  • Journal of Applied Phycology
  • Journal of Experimental Marine Biology and Ecology
  • Journal of Phycology
  • Journal of Shellfish Research
  • Reviews in Fish Biology and Fisheries
  • Reviews in Fisheries Science

See also[edit]

References[edit]

  1. ^ McWilliams, James (2009). Food Only. New York: Little, Brown and Company. ISBN 978-0-316-03374-9. 
  2. ^ a b Borgatti, Rachel; Buck, Eugene H. (December 13, 2004). "Open Ocean Aquaculture". Congressional Research Service. Retrieved April 10, 2010. 
  3. ^ McAvoy, Audrey (October 24, 2009). "Hawaii regulators approve first US tuna farm". The Associated Press. Retrieved April 9, 2010. 
  4. ^ Seawater pond mariculture techniques
  5. ^ DeVoe, M.R. (1994). Aquaculture and the marine environment: policy and management issues and opportunities in the United States. Bull. Natl. Res. Inst. Aquacult. Supp. 1:111-123.
  6. ^ Read, P., Fernandes, T. (2003). Management of environmental impacts of marine aquaculture in Europe. Aquaculture 226: 139-163.
  7. ^ Ross, A. (1997). Leaping in the Dark: A Review of the Environmental Impacts of Marine Salmon Farming in Scotland and Proposals for Change. Scottish Environment Link, Perth, Scotland. 92 pp.
  8. ^ Evik, A., Hansen, P.A., Aure, J., Stigebrandt, A., Johannessen, P., Jahnsen, T. (1997). Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling – Ongrowing fish farms –Monitoring). Aquaculture 158, 85– 94.
  9. ^ a b c d e f g Jennings, S., Kaiser, M.J., Reynolds, J.D. (2001). Marine Fisheries Ecology. Blackwell, Victoria.
  10. ^ Wu, R.S.S. (1995). The environmental impact of marine fish culture: Towards a sustainable future. Marine Pollution Bulletin 31: 159-166.
  11. ^ a b Forrest B, Keeley N, Gillespie P, Hopkins G, Knight B, Govier D. (2007). Review of the ecological effects of marine finfish aquaculture: final report. Prepared for Ministry of Fisheries. Cawthron Report No. 1285. 71p.
  12. ^ a b c d e f g Black, K.D. (2001). Environmental, economic and social impacts of mariculture. In: Encyclopedia of Ocean Sciences. Steele, J., Thorpe, S., Turekian, K. (eds). Academic Press. pp. 1578-1584.
  13. ^ Katavic, I. (1999). Mariculture in the New Millennium. Agriculture Conspectus Scientificus 64(3): 223-229.
  14. ^ Nell, J.A. (2002). Farming triploid oysters. Aquaculture 210, 69-88.
  15. ^ Pfeiffer, T. (2010). Recirculation Technology: the future of aquaculture. Resource 17(3): 7-9.
  16. ^ Troup, A.J., Cairns, S.C., Simpson, R.D. (2005). Growth and mortality of sibling triploid and diploid Sydney rock oysters, Saccostrea glomerata (Gould), in the Camden Haven River. doi:10.1111/j.1365-2109.2005.01326.x. Aquaculture Research 36, 1093-1103.
  17. ^ a b Naylor, R.L., Williams, S.L., Strong, D.R. (2001). Aquaculture – a Gateway for Exotic Species. Science 294: 1655-1656.
  18. ^ Maury-Brachet, R., Rochard, E., Durrieu, G., Boudou, A. (2008). Environmental Science and Pollution Research 15(1): 89-94.
  19. ^ Rosenberg, A.A. (2008). The price of lice. Nature 451: 23-24.
  20. ^ a b Kaiser, M.J., Attrill, M.J., Jennings, S., Thomas, D.N., Barnes, D.K.A., Brierley, A.S., Polunin, N.V.C., Raffaelli, D.G., Williams, P.J.le B. (2005). Marine Ecology: Processes, Systems and Impacts. Oxford University Press, New York.
  21. ^ a b Trujillo, A.P., Thurman, H.V. (2008) Essentials of Oceanography Ninth Edition. Pearson Prentice Hall. New Jersey.
  22. ^ a b c Katavic, Ivan. (1999). Mariculture in the New Millennium. ACS, 223-229.
  23. ^ a b Brugere, Cecile, Muir, James F., & Young, James A. (1999). Green grow the fishes-Oh? Environmental attributes in marketing aquaculture products. Aquculture Economics & Management 3(1), 7-17.
  24. ^ UNEP, World Fisheries Trust. (2002). THE EFFECTS OF MARICULTURE ON BIODIVERSITY"
  25. ^ Schwermer, C.U., T.G. Ferdelman, P. Stief, A. Gieseke, N. Rezakhani, J. van Rijn, D. de Beer, and A. Schramm. 2010. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbial Ecology 72(3):476-480. http://www3.interscience.wiley.com/journal/123325988/abstract
  26. ^ J. G. Ferreira, A.J.S. Hawkins, S.B. Bricker (2007) Management of productivity, environmental effects and profitability of shellfish aquaculture – The Farm Aquaculture Resource Management (FARM) model. Aquaculture, 264, 160-174.

External links[edit]