John Bardeen

From Wikipedia, the free encyclopedia - View original article

John Bardeen
Bardeen.jpg
Born(1908-05-23)May 23, 1908
Madison, Wisconsin, U.S.
DiedJanuary 30, 1991(1991-01-30) (aged 82)
Boston, Massachusetts, U.S.
ResidenceUnited States
NationalityAmerican
FieldsPhysics
InstitutionsBell Telephone Laboratories
University of Illinois
Alma materUniversity of Wisconsin–Madison
Princeton University
Doctoral advisorEugene Wigner
Doctoral studentsJohn Robert Schrieffer
Nick Holonyak
Known forTransistor
BCS theory
Superconductivity
Notable awardsStuart Ballantine Medal (1952)
Oliver E. Buckley Condensed Matter Prize (1954)
Nobel Prize in Physics (1956)
National Medal of Science (1965)
IEEE Medal of Honor (1971)
Nobel Prize in Physics (1972)
Lomonosov Gold Medal (1987)
Harold Pender Award (1988)
SpouseJane (1907–1997)
 
Jump to: navigation, search
John Bardeen
Bardeen.jpg
Born(1908-05-23)May 23, 1908
Madison, Wisconsin, U.S.
DiedJanuary 30, 1991(1991-01-30) (aged 82)
Boston, Massachusetts, U.S.
ResidenceUnited States
NationalityAmerican
FieldsPhysics
InstitutionsBell Telephone Laboratories
University of Illinois
Alma materUniversity of Wisconsin–Madison
Princeton University
Doctoral advisorEugene Wigner
Doctoral studentsJohn Robert Schrieffer
Nick Holonyak
Known forTransistor
BCS theory
Superconductivity
Notable awardsStuart Ballantine Medal (1952)
Oliver E. Buckley Condensed Matter Prize (1954)
Nobel Prize in Physics (1956)
National Medal of Science (1965)
IEEE Medal of Honor (1971)
Nobel Prize in Physics (1972)
Lomonosov Gold Medal (1987)
Harold Pender Award (1988)
SpouseJane (1907–1997)

John Bardeen (May 23, 1908 – January 30, 1991) was an American physicist and electrical engineer, the only person to have won the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the invention of the transistor; and again in 1972 with Leon N Cooper and John Robert Schrieffer for a fundamental theory of conventional superconductivity known as the BCS theory.

The transistor revolutionized the electronics industry, allowing the Information Age to occur, and made possible the development of almost every modern electronic device, from telephones to computers to missiles. Bardeen's developments in superconductivity, which won him his second Nobel, are used in Nuclear Magnetic Resonance Spectroscopy (NMR) or its medical sub-tool magnetic resonance imaging (MRI).

In 1990, John Bardeen appeared on LIFE Magazine's list of "100 Most Influential Americans of the Century."[1]

Early life[edit]

John Bardeen was born in Madison, Wisconsin on May 23, 1908.[2]

Bardeen attended the University High School at Madison for several years, but graduated from Madison Central High School in 1923.[2] He graduated from high school at age fifteen, even though he could have graduated several years earlier. His graduation was postponed due to taking additional courses at another high school and also partly because of his mother's death. He entered the University of Wisconsin–Madison in 1923. While in college he joined the Zeta Psi fraternity. He raised the needed membership fees partly by playing billiards. He was initiated as a member of Tau Beta Pi engineering honor society. He chose engineering because he didn't want to be an academic like his father and also because it is mathematical. He also felt that engineering had good job prospects.[3]

Bardeen received his B.S. in electrical engineering in 1928 from the University of Wisconsin–Madison.[4] He graduated in 1928 despite taking a year off during his degree to work in Chicago.[5] He had taken all the graduate courses in physics and mathematics that had interested him, and, in fact, graduated in five years, one more than usual; this allowed him time to also complete a Master's thesis, supervised by Leo J. Peters. He received his M.S. in electrical engineering in 1929 from Wisconsin.[4]

Bardeen stayed on for some time at Wisconsin furthering his studies, but he eventually went to work for Gulf Research Laboratories, the research arm of the Gulf Oil Corporation, based in Pittsburgh.[1] From 1930 to 1933, Bardeen worked there on the development of methods for the interpretation of magnetic and gravitational surveys.[2] He worked as a geophysicist. After the work failed to keep his interest, he applied and was accepted to the graduate program in mathematics at Princeton University.[3]

Bardeen studied both mathematics and physics as a graduate student, ending up writing his thesis on a problem in solid-state physics, under physicist Eugene Wigner. Before completing his thesis, he was offered a position as Junior Fellow of the Society of Fellows at Harvard University in 1935. He spent the next three years there, from 1935 to 1938, working with Nobel laureate physicist John Hasbrouck van Vleck and to-be laureate Percy Williams Bridgman on problems in cohesion and electrical conduction in metals, and also did some work on level density of nuclei. He received his Ph.D. in mathematical physics from Princeton in 1936.[2]

Academic career[edit]

Bell Labs[edit]

John Bardeen, William Shockley and Walter Brattain at Bell Labs, 1948.

In October 1945, John Bardeen began work at Bell Labs. Bardeen was a member of a Solid State Physics Group, led by William Shockley and chemist Stanley Morgan. Other personnel working in the group were Walter Brattain, physicist Gerald Pearson, chemist Robert Gibney, electronics expert Hilbert Moore and several technicians. He moved his family to Summit, New Jersey.[6]

The assignment of the group was to seek a solid-state alternative to fragile glass vacuum tube amplifiers. Their first attempts were based on Shockley's ideas about using an external electrical field on a semiconductor to affect its conductivity. These experiments mysteriously failed every time in all sorts of configurations and materials. The group was at a standstill until Bardeen suggested a theory that invoked surface states that prevented the field from penetrating the semiconductor. The group changed its focus to study these surface states, and they met almost daily to discuss the work. The rapport of the group was excellent, and ideas were freely exchanged.[7] By the winter of 1946 they had enough results that Bardeen submitted a paper on the surface states to Physical Review. Brattain started experiments to study the surface states through observations made while shining a bright light on the semiconductor's surface. This led to several more papers (one of them co-authored with Shockley), which estimated the density of the surface states to be more than enough to account for their failed experiments. The pace of the work picked up significantly when they started to surround point contacts between the semiconductor and the conducting wires with electrolytes. Moore built a circuit that allowed them to vary the frequency of the input signal easily and suggested that they use glycol borate (gu), a viscous chemical that didn't evaporate. Finally they began to get some evidence of power amplification when Pearson, acting on a suggestion by Shockley,[8] put a voltage on a droplet of gu placed across a P-N junction.

The invention of the transistor[edit]

A stylized replica of the first transistor invented at Bell Labs on December 23, 1947

On December 23, 1947, Bardeen and Brattain—working without Shockley—succeeded in creating a point-contact transistor that achieved amplification. By the next month, Bell Labs' patent attorneys started to work on the patent applications.[9]

Bell Labs' attorneys soon discovered that Shockley's field effect principle had been anticipated and patented in 1930 by Julius Lilienfeld, who filed his MESFET-like patent in Canada on October 22, 1925.[10]

Shockley took the lion's share of the credit in public for the invention of transistor, which led to a deterioration of Bardeen's relationship with Shockley.[11] Bell Labs management, however, consistently presented all three inventors as a team. Shockley eventually infuriated and alienated Bardeen and Brattain, and he essentially blocked the two from working on the junction transistor. Bardeen began pursuing a theory for superconductivity and left Bell Labs in 1951. Brattain refused to work with Shockley further and was assigned to another group. Neither Bardeen nor Brattain had much to do with the development of the transistor beyond the first year after its invention.[12]

The "transistor" (a combination of "transconductance" and "resistor") was 1/50 as large as the vacuum tubes it replaced in televisions and radios and allowed electrical devices to become more compact.[1]

University of Illinois at Urbana-Champaign[edit]

A commemorative plaque remembering John Bardeen and the theory of superconductivity, at the University of Illinois at Urbana-Champaign.

By 1951, Bardeen was looking for a new job. Fred Seitz, a friend of Bardeen, convinced the University of Illinois at Urbana-Champaign to make Bardeen an offer of $10,000 a year. Bardeen accepted the offer and left Bell Labs.[9] He joined the engineering faculty and the physics faculty at the University of Illinois at Urbana-Champaign in 1951. He was Professor of Electrical Engineering and of Physics at Illinois. His first Ph.D. student was Nick Holonyak (1954), the inventor of the first LED in 1962.[13]

At Illinois, he established two major research programs, one in the Electrical Engineering Department and one in the Physics Department. The research program in the Electrical Engineering Department dealt with both experimental and theoretical aspects of semiconductors, and the research program in the Physics Department dealt with theoretical aspects of macroscopic quantum systems, particularly superconductivity and quantum liquids.[14]

He was an active professor at Illinois from 1951 to 1975 and then became Professor Emeritus.[1] In his later life, Bardeen remained active in academic research, during which time he focused on understanding the flow of electrons in charge density waves (CDWs) through metallic linear chain compounds. His proposals[15][16][17] that CDW electron transport is a collective quantum phenomenon (see Macroscopic quantum phenomena) were initially greeted with skepticism.[18] However, experiments reported in 2012[19] show oscillations in CDW current versus magnetic flux through tantalum trisulfide rings, similar to the behavior of superconducting quantum interference devices (see SQUID and Aharonov–Bohm effect), lending credence to the idea that collective CDW electron transport is fundamentally quantum in nature.[20][21] (See quantum mechanics.) Bardeen continued his research throughout the 1980s, and published articles in Physical Review Letters[22] and Physics Today[23] less than a year before he died.

The Nobel Prize in Physics in 1956[edit]

In 1956, John Bardeen shared the Nobel Prize in Physics with William Shockley of Semiconductor Laboratory of Beckman Instruments and Walter Brattain of Bell Telephone Laboratories "for their researches on semiconductors and their discovery of the transistor effect".[24]

At the Nobel Prize ceremony in Stockholm, Sweden, Brattain and Shockley received their awards that night from King Gustaf VI Adolf. Bardeen brought only one of his three children to the Nobel Prize ceremony. King Gustav chided Bardeen because of this, and Bardeen assured the King that the next time he would bring all his children to the ceremony. He kept his promise.[25]

BCS theory[edit]

Main article: BCS theory

In 1957, John Bardeen, in collaboration with Leon Cooper and his doctoral student John Robert Schrieffer, proposed the standard theory of superconductivity known as the BCS theory (named for their initials).[1]

The Nobel Prize in Physics in 1972[edit]

In 1972, John Bardeen shared the Nobel Prize in Physics with Leon N Cooper of Brown University and John Robert Schrieffer of the University of Pennsylvania "for their jointly developed theory of superconductivity, usually called the BCS-theory".[26]

Bardeen did bring all his children to the Nobel Prize ceremony in Stockholm, Sweden.[25]

This was Bardeen's second Nobel Prize in Physics. He became the first person to win two Nobel Prizes in the same field.[27] He also became the third person out of only four to win two Nobel Prizes. The first two were Marie Skłodowska-Curie, who received the Nobel Prize in Physics in 1903 and Nobel Prize in Chemistry in 1911, and Linus Pauling, who received the Nobel Prize in Chemistry in 1954 and Nobel Peace Prize in 1962. In 1980, Frederick Sanger won his second Nobel Prize in Chemistry and became the fourth person to win two Nobel Prizes.[28]

Bardeen gave much of his Nobel Prize money to fund the Fritz London Memorial Lectures at Duke University.[29]

Other awards[edit]

Xerox[edit]

Bardeen was also an important adviser to Xerox Corporation. Though quiet by nature, he took the uncharacteristic step of urging Xerox executives to keep their California research center, Xerox PARC, afloat when the parent company was suspicious that its research center would amount to little.

Death[edit]

Bardeen died of heart disease at Brigham and Women's Hospital in Boston, Massachusetts, on January 30, 1991.[32] Although he lived in Champaign-Urbana, he had come to Boston for medical consultation.[1] Bardeen and his wife Jane (1907–1997) are buried in Forest Hill Cemetery, Madison, Wisconsin.[33] They were survived by three children, James & William and Elizabeth Bardeen Greytak, and six grandchildren.[1]

Personal life[edit]

Bardeen married Jane Maxwell on July 18, 1938. While at Princeton, he met Jane during a visit to his old friends in Pittsburgh.

Bardeen was a man with a very unassuming personality. While he served as a professor for almost 40 years at the University of Illinois, he was best remembered by neighbors for hosting cookouts where he would cook for his friends, many of whom were unaware of his accomplishments at the university. He would always ask his guests if they liked the hamburger bun toasted (since he liked his that way). He enjoyed playing golf and going on picnics with his family.[13]

It has been said that Bardeen proves wrong the stereotype of the "crazy scientist."[13] Lillian Hoddeson, a University of Illinois historian who wrote a book on Bardeen, said that because he "differed radically from the popular stereotype of genius and was uninterested in appearing other than ordinary, the public and the media often overlooked him."[13]

When asked about his beliefs in an interview in 1988, Bardeen responded: "I am not a religious person, and so do not think about it very much". However, he acknowledged the limits of science saying: "I feel that science cannot provide an answer to the ultimate questions about the meaning and purpose of life." Bardeen did believe in a code of moral values and behaviour and the possibility of religion answering questions on faith.[34] In fact, the children of the scientist were taken to church by his wife, who taught Sunday school and was a church elder.[35] Despite this, he and his wife made it clear that they do not have any religious faith.[36]

Legacy[edit]

In honor of Professor Bardeen, the engineering quadrangle at the University of Illinois at Urbana-Champaign is named the Bardeen.

Also in honor of Bardeen, Sony Corporation endowed a $3 million John Bardeen professorial chair at the University of Illinois at Urbana-Champaign, beginning in 1990.[32] The current John Bardeen Professor is Nick Holonyak, Bardeen's first doctoral student and protege.

At the time of Bardeen's death, then-University of Illinois chancellor Morton Weir said, "It is a rare person whose work changes the life of every American; John's did."[27]

Bardeen was honored on a March 6, 2008, United States postage stamp as part of the "American Scientists" series designed by artist Victor Stabin. The $0.41 stamp was unveiled in a ceremony at the University of Illinois.[37] His citation reads: "Theoretical physicist John Bardeen (1908–1991) shared the Nobel Prize in Physics twice -- in 1956, as co-inventor of the transistor and in 1972, for the explanation of superconductivity. The transistor paved the way for all modern electronics, from computers to microchips. Diverse applications of superconductivity include infrared sensors and medical imaging systems." The other scientists on the "American Scientists" sheet include biochemist Gerty Cori, chemist Linus Pauling and astronomer Edwin Hubble.

References[edit]

Cited references[edit]

  1. ^ a b c d e f g "John Bardeen, Nobelist, Inventor of Transistor, Dies". Washington Post. 1991-01-31. Retrieved 2007-08-03. 
  2. ^ a b c d "Biography of John Bardeen". The Nobel Foundation. Retrieved 2007-11-01. 
  3. ^ a b "Biography of John Bardeen 1". PBS. Retrieved 2007-12-24. 
  4. ^ a b "Curriculum Vitae of John Bardeen". The Nobel Foundation. Retrieved 2007-11-01. 
  5. ^ David Pines (2003-05-01). "John Bardeen: genius in action". physicsworld.com. Archived from the original on 2007-10-20. Retrieved 2008-01-07. 
  6. ^ Hoddeson, Lillian and Daitch, Vicki. "True Genius: The Life and Science of John Bardeen", p. 117. "Soon, however, life in Summit would become easy and rich for the Bardeens."
  7. ^ Brattain quoted in Crystal Fire p. 127
  8. ^ Crystal Fire p. 132
  9. ^ a b "Biography of John Bardeen 2". PBS. Retrieved 2007-12-24. 
  10. ^ US 1745175  "Method and apparatus for controlling electric current" first filing in Canada on 22.10.1925
  11. ^ Diane Kormos Buchwald. American Scientist 91.2 (Mar.-Apr. 2003): 185-86.
  12. ^ Crystal Fire p. 278
  13. ^ a b c d "Nice Guys Can Finish As Geniuses at University of Illinois in Urbana-Champaign.". Chicago Tribune. 2003-01-25. Retrieved 2007-08-03. 
  14. ^ "Biography at the University of Illinois at Urbana-Champaign". The University of Illinois at Urbana-Champaign. Archived from the original on 2007-10-11. Retrieved 2007-11-06. 
  15. ^ Bardeen, John (1979). "Theory of non-ohmic conduction from charge-density waves in NbSe3". Physical Review Letters 42 (22): 1498–1500. Bibcode:1979PhRvL..42.1498B. doi:10.1103/PhysRevLett.42.1498. 
  16. ^ Bardeen, John (1980). "Tunneling theory of charge-density-wave depinning". Physical Review Letters 45 (24): 1978–1980. Bibcode:1980PhRvL..45.1978B. doi:10.1103/PhysRevLett.45.1978. 
  17. ^ J. H. Miller, Jr., J. Richard, J. R. Tucker, and John Bardeen (1983). "Evidence for tunneling of charge-density waves in TaS3". Physical Review Letters 51 (17): 1592–1595. Bibcode:1983PhRvL..51.1592M. doi:10.1103/PhysRevLett.51.1592. 
  18. ^ Pines, David (2009). "Biographical Memoirs: John Bardeen". Proceedings of the American Philosophical Society 153 (3): 287–321. [dead link]
  19. ^ M. Tsubota, K. Inagaki, T. Matsuura and S. Tanda (2012). "Aharonov-Bohm effect in charge-density wave loops with inherent temporal current switching". EPL (Europhysics Letters) 97 (5): 57011. arXiv:0906.5206. Bibcode:2012EL.....9757011T. doi:10.1209/0295-5075/97/57011. 
  20. ^ J. H. Miller, Jr., A.I. Wijesinghe, Z. Tang, and A.M. Guloy (2012). "Correlated quantum transport of density wave electrons". Physical Review Letters 108 (3): 036404. arXiv:1109.4619. Bibcode:2012PhRvL.108c6404M. doi:10.1103/PhysRevLett.108.036404. 
  21. ^ J.H. Miller, Jr., A.I. Wijesinghe, Z. Tang, and A.M. Guloy. "Coherent quantum transport of charge density waves". 
  22. ^ Bardeen, John (1990). "Theory of size effects in depinning of charge-density waves". Physical Review Letters 64 (19): 2297–2299. Bibcode:1990PhRvL..64.2297B. doi:10.1103/PhysRevLett.64.2297. 
  23. ^ Bardeen, John (1990). "Superconductivity and other macroscopic quantum phenomena". Physics Today 43 (12): 25–31. Bibcode:1990PhT....43l..25B. doi:10.1063/1.881218. 
  24. ^ "The Nobel Prize in Physics in 1956". The Nobel Foundation. Retrieved 2007-11-06. 
  25. ^ a b "Biography of John Bardeen 3". PBS. Retrieved 2007-12-24. 
  26. ^ "The Nobel Prize in Physics in 1972". The Nobel Foundation. Retrieved 2007-12-19. 
  27. ^ a b "Physicist John Bardeen, 82, transistor pioneer, Nobelist". Chicago Sun-Times. 1991-01-31. Retrieved 2007-08-03. 
  28. ^ "Nobel Laureates Facts". The Nobel Foundation. Retrieved 2007-12-19. [dead link]
  29. ^ "Fritz London Memorial Prize". Duke University. Retrieved 2007-12-24. 
  30. ^ "Book of Members, 1780-2010: Chapter B". American Academy of Arts and Sciences. Retrieved 15 April 2011. 
  31. ^ "The President's National Medal of Science: Recipient Details - US National Science Foundation (NSF)". nsf.gov. Retrieved 2014-02-25. 
  32. ^ a b John Noble Wilford (January 31, 1991). "Dr. John Bardeen, 82, Winner Of Nobel Prize for Transistor, Dies". New York Times. Retrieved 2014-02-25. John Bardeen, a co-inventor of the transistor that led to modern electronics and twice a winner of the Nobel Prize in Physics, died yesterday at Brigham and Women's Hospital in Boston. He was 82 years old. ... 
  33. ^ https://secure.flickr.com/photos/centralhistorian/383446449/, Accessed 9-30-2009.
  34. ^ Hoddeson, Lillian; Daitch, Vicki (2002). True Genius: The Life and Science of John Bardeen. Joseph Henry Press. ISBN 9780309169547. John's mother, Althea, had been reared in the Quaker tradition, and his stepmother, Ruth, was Catholic, but John was resolutely secular throughout his life. He was once "taken by surprise" when an interviewer asked him a question about religion. "I am not a religious person," he said, "and so do not think about it very much." He went on in a rare elaboration of his personal beliefs. "I feel that science cannot provide an answer to the ultimate questions about the meaning and purpose of life. With religion, one can get answers on faith. Most scientists leave them open and perhaps unanswerable, but do abide by a code of moral values. For civilized society to succeed, there must be a common consensus on moral values and moral behaviour, with due regard to the welfare of our fellow man. There are likely many sets of moral values compatible with successful civilized society. It is when they conflict that difficulties arise." 
  35. ^ Daitch & Hoddeson (2002). True Genius:: The Life and Science of John Bardeen. Joseph Henry Press, pp. 168-169.
  36. ^ Vicki Daitch, Lillian Hoddeson (2002). "Last Journey". True Genius:: The Life and Science of John Bardeen. Joseph Henry Press. p. 313. ISBN 9780309169547. “Every time we attend a funeral service,” Jane had once told her sister Betty, “we decide again that we want no such ceremony when we die.” She and John agreed that the family could, if they wanted to, have a memorial service conducted by friends and family, “but not a sermon by a stranger, who, if a minister, is bound to dwell on life after death and other religious ideas in which we have no faith." 
  37. ^ "Bardeen Stamp Celebrated at Campus Ceremony". University of Illinois. Retrieved 2008-03-04. 

General references[edit]

External links[edit]