Hyperpolarization (biology)

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search

Hyperpolarization is a change in a cell's membrane potential that makes it more negative. It is the opposite of a depolarization. It inhibits action potentials by increasing the stimulus required to move the membrane potential to the action potential threshold.

Hyperpolarization is often caused by efflux of K+ (a cation) through K+ channels, or influx of Cl (an anion) through Cl channels. On the other hand, influx of cations, e.g. Na+ through Na+ channels or Ca2+ through Ca2+ channels, inhibits hyperpolarization. If a cell has Na+ or Ca2+ currents at rest, then inhibition of those currents will also result in a hyperpolarization.

Because hyperpolarization is a change in membrane voltage, electrophysiologists measure it using current clamp techniques. In voltage clamp, the membrane currents giving rise to hyperpolarization are either an increase in outward current or a decrease in inward current.

In neurons, the cell enters a state of hyperpolarization immediately following the generation of an action potential. While hyperpolarized, the neuron is in a refractory period that lasts roughly 2 milliseconds, during which the neuron is unable to generate subsequent action potentials. Sodium-potassium ATPases redistribute K+ and Na+ ions until the membrane potential is back to its resting potential of around –70 millivolts, at which point the neuron is once again ready to transmit another action potential.[1]

Examples[edit source | edit]

Diagram of membrane potential changes during an action potential
  1. During the afterhyperpolarization period after an action potential, the membrane potential is more negative than when the cell is at the resting potential. In the figure to the right, this undershoot occurs at approximately 3 to 4 milliseconds (ms) on the time scale. The afterhyperpolarization is the time when the membrane potential is hyperpolarized relative to the resting potential.
  2. During the rising phase of an action potential, the membrane potential changes from negative to positive, a depolarization. In the figure, the rising phase is from approximately 1 to 2 ms on the graph. During the rising phase, once the membrane potential becomes positive, the membrane potential continues to depolarize (overshoot) until the peak of the action potential is reached at about +40 millivolts (mV). After the peak of the action potential, a hyperpolarization returns the membrane potential to its resting value, first by making it less positive, until 0 mV is reached, and then by continuing to make it more negative. This hyperpolarization occurs in the figure from approximately 2 to 3 ms on the time scale.

References[edit source | edit]

  1. ^ Pack, Phillip E. "Cliffs AP Biology 3rd Edition"

Further reading[edit source | edit]