Hofmann rearrangement

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one fewer carbon atoms.[1][2][3]

The Hofmann rearrangement.

The reaction is named after its discoverer - August Wilhelm von Hofmann. This reaction is also sometimes called the Hofmann degradation or the Harmon Process, and should not be confused with the Hofmann elimination.


The reaction of bromine with sodium hydroxide forms sodium hypobromite in situ, which transforms the primary amide into an intermediate isocyanate via a formation of a nitrene. The intermediate isocyanate is hydrolyzed to a primary amine, giving off carbon dioxide.

Hofmann rearrangement mechanism.
John McMurry 5th ed.
  1. Base abstracts an acidic N-H proton, yielding an anion.
  2. The anion reacts with bromine in an α-substitution reaction to give an N-bromoamide.
  3. Base abstraction of the remaining amide proton gives a bromoamide anion.
  4. The bromoamide anion rearranges as the R group attached to the carbonyl carbon migrates to nitrogen at the same time the bromide ion leaves, giving an isocyanate.
  5. The isocyanate adds water in a nucleophilic addition step to yield a carbamic acid.
  6. The carbamic acid spontaneously loses CO2, yielding the amine product.


Several reagents can substitute for bromine. Sodium hypochlorite,[4] Lead tetraacetate,[5] N-bromosuccinimide, (bis(trifluoroacetoxy)iodo)benzene,[6] and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) can effect a Hofmann rearrangement. In the following example, the intermediate isocyanate is trapped by methanol, forming a carbamate.[7]

The Hofmann rearrangement using NBS.

In a similar fashion, the intermediate isocyanate can be trapped by tert-butyl alcohol, yielding the tert-butoxycarbonyl (Boc)-protected amine.

Hoffmann Rearrangement also can be used to yield carbamates from α,β-unsaturated or α-hydroxy amides[8][9] or nitriles from α,β-Acetylenic amides[10][9] in good yields (≈70%).


See also[edit]


  1. ^ Hofmann, A. W. v. (1881). Ber. 14: 2725. 
  2. ^ Wallis, E. S.; Lane, J. F. (1949). Org. React. 3: 267–306. 
  3. ^ Shioiri, T. (1991). Comp. Org. Syn. 6: 800–806. 
  4. ^ Mohan, Ram S.; Monk, Keith A. (1999). "The Hofmann Rearrangement Using Household Bleach: Synthesis of 3-Nitroaniline". Journal of Chemical Education 76 (12): 1717. doi:10.1021/ed076p1717. 
  5. ^ Baumgarten, Henry; Smith, Howard; and Staklis, Andris (1975). "Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate". The Journal of Organic Chemistry 40 (24): 3554–3561. doi:10.1021/jo00912a019. Retrieved 19 December 2013. 
  6. ^ Almond, M. R.; Stimmel, J. B.; Thompson, E. A.; Loudon, G.M. (1993), "Hofmann Rearrangement under Mildly Acidic Conditions using [I,I-Bis(Trifluoroacetoxy)]iodobenzene: Cyclobutylamine Hydrochloride from Cyclobutanecarboxamide", Org. Synth. ; Coll. Vol. 8: 132 
  7. ^ Keillor, J. W.; Huang, X. (2004), "Methyl Carbamate Formation via Modified Hofmann Rearrangement Reactions: Methyl N-(p-Methoxyphenyl)carbamate", Org. Synth. ; Coll. Vol. 10: 549 
  8. ^ Weerman, R.A. (1913). "Einwirkung von Natriumhypochlorit auf Amide ungesättigter Säuren". Justus Liebigs Annalen der Chemie 401 (1): 1–20. doi:10.1002/jlac.19134010102. 
  9. ^ a b Adams, Rodger (1946). Organic Reactions Volume III. Newyork: John Wiley and Sons Inc. pp. 275 & 276. ISBN 9780471005285. Retrieved 15 June 2014. 
  10. ^ Rinkes, I. J. (1920). "De l'action de l'Hypochlorite de Sodium sur les Amides D'Acides". Recueil des Travaux Chimiques des Pays-Bas 39 (12): 704–710. doi:10.1002/recl.19200391204. 

External links[edit]