HDAC3

From Wikipedia, the free encyclopedia - View original article

Histone deacetylase 3
Available structures
PDBOrtholog search: PDBe, RCSB
Identifiers
SymbolsHDAC3; HD3; RPD3; RPD3-2
External IDsOMIM605166 MGI1343091 HomoloGene48250 ChEMBL: 1829 GeneCards: HDAC3 Gene
EC number3.5.1.98
RNA expression pattern
PBB GE HDAC3 216326 s at tn.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez884115183
EnsemblENSG00000171720ENSMUSG00000024454
UniProtO15379O88895
RefSeq (mRNA)NM_003883.3NM_010411.2
RefSeq (protein)NP_003874.2NP_034541.2
Location (UCSC)Chr 5:
141 – 141.02 Mb
Chr 18:
37.94 – 37.95 Mb
PubMed search[1][2]
 
Jump to: navigation, search
Histone deacetylase 3
Available structures
PDBOrtholog search: PDBe, RCSB
Identifiers
SymbolsHDAC3; HD3; RPD3; RPD3-2
External IDsOMIM605166 MGI1343091 HomoloGene48250 ChEMBL: 1829 GeneCards: HDAC3 Gene
EC number3.5.1.98
RNA expression pattern
PBB GE HDAC3 216326 s at tn.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez884115183
EnsemblENSG00000171720ENSMUSG00000024454
UniProtO15379O88895
RefSeq (mRNA)NM_003883.3NM_010411.2
RefSeq (protein)NP_003874.2NP_034541.2
Location (UCSC)Chr 5:
141 – 141.02 Mb
Chr 18:
37.94 – 37.95 Mb
PubMed search[1][2]

Histone deacetylase 3 is an enzyme that in humans is encoded by the HDAC3 gene.[1][2]

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene belongs to the histone deacetylase/acuc/apha family. It has histone deacetylase activity and represses transcription when tethered to a promoter. It may participate in the regulation of transcription through its binding with the zinc-finger transcription factor YY1. This protein can also down-regulate p53 function and thus modulate cell growth and apoptosis. This gene is regarded as a potential tumor suppressor gene.[3]

Contents

Model organisms

Model organisms have been used in the study of HDAC3 function. A conditional knockout mouse line, called Hdac3tm1a(EUCOMM)Wtsi[8][9] was generated as part of the International Knockout Mouse Consortium program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[10][11][12]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[6][13]

Twenty six tests were carried out on mutant mice and two significant abnormalities were observed.[6] No homozygous mutant embryos were identified during gestation, and in a separate study none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no significant abnormalities were observed in these animals.[6]

Interactions

HDAC3 has been shown to interact with HDAC9,[14][15] HDAC7A,[16] Retinoblastoma protein,[17][18] RBBP4,[19] Testicular receptor 2,[20][21][22] MAP3K7IP2,[23] Peroxisome proliferator-activated receptor delta,[21][24] GTF2I,[25][26] Histone deacetylase 5,[27][28][29][30] RELA,[31] MAPK11,[32] TBL1X,[29][33] Nuclear receptor co-repressor 1,[16][28][29][34][35][36][37] Cyclin D1,[38][39] Nuclear receptor co-repressor 2,[28][33][34][35][36][37][40] ZBTB33,[34] SUV39H1,[41] Peroxisome proliferator-activated receptor gamma,[17][21] T-complex 1,[40] HDAC4,[16][27][28][30] CBFA2T3,[42][43] GPS2,[29] YY1,[44][45] RUNX2,[46] GATA1,[47] GATA2,[48] Promyelocytic leukemia protein[49] and Ubiquitin C.[50]

See also

References

  1. ^ Emiliani S, Fischle W, Van Lint C, Al-Abed Y, Verdin E (April 1998). "Characterization of a human RPD3 ortholog, HDAC3". Proc Natl Acad Sci U S A 95 (6): 2795–800. doi:10.1073/pnas.95.6.2795. PMC 19648. PMID 9501169. //www.ncbi.nlm.nih.gov/pmc/articles/PMC19648/. 
  2. ^ Dangond F, Hafler DA, Tong JK, Randall J, Kojima R, Utku N, Gullans SR (March 1998). "Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells". Biochem Biophys Res Commun 242 (3): 648–52. doi:10.1006/bbrc.1997.8033. PMID 9464271. 
  3. ^ "Entrez Gene: HDAC3 histone deacetylase 3". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8841. 
  4. ^ "Salmonella infection data for Hdac3". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MAGF/salmonella-challenge/. 
  5. ^ "Citrobacter infection data for Hdac3". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MAGF/citrobacter-challenge/. 
  6. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. 
  7. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  8. ^ "International Knockout Mouse Consortium". http://www.knockoutmouse.org/martsearch/search?query=Hdac3. 
  9. ^ "Mouse Genome Informatics". http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4433408. 
  10. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMID 21677750.  edit
  11. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  12. ^ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  13. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. //www.ncbi.nlm.nih.gov/pmc/articles/PMC3218837/. 
  14. ^ Petrie, Kevin; Guidez Fabien, Howell Louise, Healy Lyn, Waxman Samuel, Greaves Mel, Zelent Arthur (May. 2003). "The histone deacetylase 9 gene encodes multiple protein isoforms". J. Biol. Chem. (United States) 278 (18): 16059–72. doi:10.1074/jbc.M212935200. ISSN 0021-9258. PMID 12590135. 
  15. ^ Zhou, X; Richon V M, Rifkind R A, Marks P A (February 2000). "Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (3): 1056–61. doi:10.1073/pnas.97.3.1056. ISSN 0027-8424. PMC 15519. PMID 10655483. //www.ncbi.nlm.nih.gov/pmc/articles/PMC15519/. 
  16. ^ a b c Fischle, W; Dequiedt F, Fillion M, Hendzel M J, Voelter W, Verdin E (September 2001). "Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo". J. Biol. Chem. (United States) 276 (38): 35826–35. doi:10.1074/jbc.M104935200. ISSN 0021-9258. PMID 11466315. 
  17. ^ a b Fajas, Lluis; Egler Viviane, Reiter Raphael, Hansen Jacob, Kristiansen Karsten, Debril Marie-Bernard, Miard Stéphanie, Auwerx Johan (December 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Dev. Cell (United States) 3 (6): 903–10. doi:10.1016/S1534-5807(02)00360-X. ISSN 1534-5807. PMID 12479814. 
  18. ^ Lai, A; Lee J M, Yang W M, DeCaprio J A, Kaelin W G, Seto E, Branton P E (October 1999). "RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins". Mol. Cell. Biol. (UNITED STATES) 19 (10): 6632–41. ISSN 0270-7306. PMC 84642. PMID 10490602. //www.ncbi.nlm.nih.gov/pmc/articles/PMC84642/. 
  19. ^ Nicolas, E; Ait-Si-Ali S, Trouche D (August 2001). "The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein". Nucleic Acids Res. (England) 29 (15): 3131–6. doi:10.1093/nar/29.15.3131. PMC 55834. PMID 11470869. //www.ncbi.nlm.nih.gov/pmc/articles/PMC55834/. 
  20. ^ Li, Guangjin; Franco Peter J, Wei Li-Na (October 2003). "Identification of histone deacetylase-3 domains that interact with the orphan nuclear receptor TR2". Biochem. Biophys. Res. Commun. (United States) 310 (2): 384–90. doi:10.1016/j.bbrc.2003.08.145. ISSN 0006-291X. PMID 14521922. 
  21. ^ a b c Franco, Peter J; Li Guangjin, Wei Li-Na (August 2003). "Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase". Mol. Cell. Endocrinol. (Ireland) 206 (1–2): 1–12. doi:10.1016/S0303-7207(03)00254-5. ISSN 0303-7207. PMID 12943985. 
  22. ^ Franco, P J; Farooqui M, Seto E, Wei L N (August 2001). "The orphan nuclear receptor TR2 interacts directly with both class I and class II histone deacetylases". Mol. Endocrinol. (United States) 15 (8): 1318–28. doi:10.1210/me.15.8.1318. ISSN 0888-8809. PMID 11463856. 
  23. ^ Baek, Sung Hee; Ohgi Kenneth A, Rose David W, Koo Edward H, Glass Christopher K, Rosenfeld Michael G (July 2002). "Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein". Cell (United States) 110 (1): 55–67. doi:10.1016/S0092-8674(02)00809-7. ISSN 0092-8674. PMID 12150997. 
  24. ^ Shi, Yanhong; Hon Michelle, Evans Ronald M (March 2002). "The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (5): 2613–8. doi:10.1073/pnas.052707099. ISSN 0027-8424. PMC 122396. PMID 11867749. //www.ncbi.nlm.nih.gov/pmc/articles/PMC122396/. 
  25. ^ Wen, Yu-Der; Cress W Douglas, Roy Ananda L, Seto Edward (January 2003). "Histone deacetylase 3 binds to and regulates the multifunctional transcription factor TFII-I". J. Biol. Chem. (United States) 278 (3): 1841–7. doi:10.1074/jbc.M206528200. ISSN 0021-9258. PMID 12393887. 
  26. ^ Tussié-Luna, María Isabel; Bayarsaihan Dashzeveg, Seto Edward, Ruddle Frank H, Roy Ananda L (October 2002). "Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (20): 12807–12. doi:10.1073/pnas.192464499. ISSN 0027-8424. PMC 130541. PMID 12239342. //www.ncbi.nlm.nih.gov/pmc/articles/PMC130541/. 
  27. ^ a b Grozinger, C M; Hassig C A, Schreiber S L (April 1999). "Three proteins define a class of human histone deacetylases related to yeast Hda1p". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 96 (9): 4868–73. doi:10.1073/pnas.96.9.4868. ISSN 0027-8424. PMC 21783. PMID 10220385. //www.ncbi.nlm.nih.gov/pmc/articles/PMC21783/. 
  28. ^ a b c d Fischle, Wolfgang; Dequiedt Franck, Hendzel Michael J, Guenther Matthew G, Lazar Mitchell A, Voelter Wolfgang, Verdin Eric (January 2002). "Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR". Mol. Cell (United States) 9 (1): 45–57. doi:10.1016/S1097-2765(01)00429-4. ISSN 1097-2765. PMID 11804585. 
  29. ^ a b c d Zhang, Jinsong; Kalkum Markus, Chait Brian T, Roeder Robert G (March 2002). "The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2". Mol. Cell (United States) 9 (3): 611–23. doi:10.1016/S1097-2765(02)00468-9. ISSN 1097-2765. PMID 11931768. 
  30. ^ a b Grozinger, C M; Schreiber S L (July 2000). "Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (14): 7835–40. doi:10.1073/pnas.140199597. ISSN 0027-8424. PMC 16631. PMID 10869435. //www.ncbi.nlm.nih.gov/pmc/articles/PMC16631/. 
  31. ^ Chen Lf; Fischle W, Verdin E, Greene W C (August 2001). "Duration of nuclear NF-kappaB action regulated by reversible acetylation". Science (United States) 293 (5535): 1653–7. doi:10.1126/science.1062374. ISSN 0036-8075. PMID 11533489. 
  32. ^ Mahlknecht, Ulrich; Will Jutta, Varin Audrey, Hoelzer Dieter, Herbein Georges (September 2004). "Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression". J. Immunol. (United States) 173 (6): 3979–90. ISSN 0022-1767. PMID 15356147. 
  33. ^ a b Guenther, M G; Lane W S, Fischle W, Verdin E, Lazar M A, Shiekhattar R (May. 2000). "A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness". Genes Dev. (UNITED STATES) 14 (9): 1048–57. ISSN 0890-9369. PMC 316569. PMID 10809664. //www.ncbi.nlm.nih.gov/pmc/articles/PMC316569/. 
  34. ^ a b c Yoon, Ho-Geun; Chan Doug W, Reynolds Albert B, Qin Jun, Wong Jiemin (September 2003). "N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso". Mol. Cell (United States) 12 (3): 723–34. doi:10.1016/j.molcel.2003.08.008. ISSN 1097-2765. PMID 14527417. 
  35. ^ a b Yoon, Ho-Geun; Chan Doug W, Huang Zhi-Qing, Li Jiwen, Fondell Joseph D, Qin Jun, Wong Jiemin (March 2003). "Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1". EMBO J. (England) 22 (6): 1336–46. doi:10.1093/emboj/cdg120. ISSN 0261-4189. PMC 151047. PMID 12628926. //www.ncbi.nlm.nih.gov/pmc/articles/PMC151047/. 
  36. ^ a b Li, J; Wang J, Wang J, Nawaz Z, Liu J M, Qin J, Wong J (August 2000). "Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3". EMBO J. (ENGLAND) 19 (16): 4342–50. doi:10.1093/emboj/19.16.4342. ISSN 0261-4189. PMC 302030. PMID 10944117. //www.ncbi.nlm.nih.gov/pmc/articles/PMC302030/. 
  37. ^ a b Underhill, C; Qutob M S, Yee S P, Torchia J (December 2000). "A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1". J. Biol. Chem. (UNITED STATES) 275 (51): 40463–70. doi:10.1074/jbc.M007864200. ISSN 0021-9258. PMID 11013263. 
  38. ^ Petre-Draviam, Christin E; Williams Erin B, Burd Craig J, Gladden Andrew, Moghadam Hamed, Meller Jaroslaw, Diehl J Alan, Knudsen Karen E (January 2005). "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene (England) 24 (3): 431–44. doi:10.1038/sj.onc.1208200. ISSN 0950-9232. PMID 15558026. 
  39. ^ Lin, Huei-Min; Zhao Li, Cheng Sheue-Yann (August 2002). "Cyclin D1 Is a Ligand-independent Co-repressor for Thyroid Hormone Receptors". J. Biol. Chem. (United States) 277 (32): 28733–41. doi:10.1074/jbc.M203380200. ISSN 0021-9258. PMID 12048199. 
  40. ^ a b Guenther, Matthew G; Yu Jiujiu, Kao Gary D, Yen Tim J, Lazar Mitchell A (December 2002). "Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex". Genes Dev. (United States) 16 (24): 3130–5. doi:10.1101/gad.1037502. ISSN 0890-9369. PMC 187500. PMID 12502735. //www.ncbi.nlm.nih.gov/pmc/articles/PMC187500/. 
  41. ^ Vaute, Olivier; Nicolas Estelle, Vandel Laurence, Trouche Didier (January 2002). "Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases". Nucleic Acids Res. (England) 30 (2): 475–81. doi:10.1093/nar/30.2.475. PMC 99834. PMID 11788710. //www.ncbi.nlm.nih.gov/pmc/articles/PMC99834/. 
  42. ^ Hoogeveen, André T; Rossetti Stefano, Stoyanova Violeta, Schonkeren Joris, Fenaroli Angelia, Schiaffonati Luisa, van Unen Leontine, Sacchi Nicoletta (September 2002). "The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies". Oncogene (England) 21 (43): 6703–12. doi:10.1038/sj.onc.1205882. ISSN 0950-9232. PMID 12242670. 
  43. ^ Amann, J M; Nip J, Strom D K, Lutterbach B, Harada H, Lenny N, Downing J R, Meyers S, Hiebert S W (October 2001). "ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain". Mol. Cell. Biol. (United States) 21 (19): 6470–83. doi:10.1128/MCB.21.19.6470-6483.2001. ISSN 0270-7306. PMC 99794. PMID 11533236. //www.ncbi.nlm.nih.gov/pmc/articles/PMC99794/. 
  44. ^ Yang, W M; Yao Y L, Sun J M, Davie J R, Seto E (October 1997). "Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family". J. Biol. Chem. (UNITED STATES) 272 (44): 28001–7. doi:10.1074/jbc.272.44.28001. ISSN 0021-9258. PMID 9346952. 
  45. ^ Yao, Y L; Yang W M, Seto E (September 2001). "Regulation of transcription factor YY1 by acetylation and deacetylation". Mol. Cell. Biol. (United States) 21 (17): 5979–91. doi:10.1128/MCB.21.17.5979-5991.2001. ISSN 0270-7306. PMC 87316. PMID 11486036. //www.ncbi.nlm.nih.gov/pmc/articles/PMC87316/. 
  46. ^ Schroeder, Tania M; Kahler Rachel A, Li Xiaodong, Westendorf Jennifer J (October 2004). "Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation". J. Biol. Chem. (United States) 279 (40): 41998–2007. doi:10.1074/jbc.M403702200. ISSN 0021-9258. PMID 15292260. 
  47. ^ Watamoto, Kouichi; Towatari Masayuki, Ozawa Yukiyasu, Miyata Yasuhiko, Okamoto Mitsunori, Abe Akihiro, Naoe Tomoki, Saito Hidehiko (December 2003). "Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation". Oncogene (England) 22 (57): 9176–84. doi:10.1038/sj.onc.1206902. ISSN 0950-9232. PMID 14668799. 
  48. ^ Ozawa, Y; Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H (October 2001). "Histone deacetylase 3 associates with and represses the transcription factor GATA-2". Blood (United States) 98 (7): 2116–23. doi:10.1182/blood.V98.7.2116. ISSN 0006-4971. PMID 11567998. 
  49. ^ Wu, W S; Vallian S, Seto E, Yang W M, Edmondson D, Roth S, Chang K S (April 2001). "The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases". Mol. Cell. Biol. (United States) 21 (7): 2259–68. doi:10.1128/MCB.21.7.2259-2268.2001. ISSN 0270-7306. PMC 86860. PMID 11259576. //www.ncbi.nlm.nih.gov/pmc/articles/PMC86860/. 
  50. ^ Tan, Fengwei; Lu Lifang, Cai Yun, Wang Jinglan, Xie Yunfei, Wang Lin, Gong Yanhua, Xu Bing-E, Wu Jun, Luo Ying, Qiang Boqin, Yuan Jiangang, Sun Xiaoqing, Peng Xiaozhong (July 2008). "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics (Germany) 8 (14): 2885–96. doi:10.1002/pmic.200700887. PMID 18655026. 

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.