Greenschist

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
Chlorite schist, a type of greenschist.

Greenschist are metamorphic rocks that formed under the lowest temperatures and pressures usually produced by regional metamorphism, typically 300–450 °C (570–840 °F) and 1–4 kilobars (14,500–58,000 psi).[1] The name comes from commonly having an abundance of green minerals such as chlorite, serpentine, and epidote, and platy minerals such as muscovite and platy serpentine.[1] The platiness causes the tendency to split, or have schistosity. Other common minerals include quartz, orthoclase, talc, carbonate minerals and amphibole (actinolite).[1]

It is a general field petrologic term applied to metamorphic or altered mafic volcanic rock. The term greenstone is sometimes used to refer to greenschist but can refer to other rock types too. The green is due to abundant green chlorite, actinolite and epidote minerals that dominate the rock. However, basalts may remain quite black if primary pyroxene does not revert to chlorite or actinolite. To qualify for the name a rock must also exhibit schistosity or some foliation or layering. The rock is derived from basalt, gabbro or similar rocks containing sodium-rich plagioclase feldspar, chlorite, epidote and quartz.[2]


Petrology[edit]

Greenschist, as a rock type, is defined by the presence of the minerals chlorite and actinolite and may contain albite or epidote. Greenschist often has a lepidoblastic, nematoblastic or schistose texure defined primarily by chlorite and actinolite. Greenschists often have some foliation resulting in mineral alignment, especially of chlorite and actinolite. Grain size is rarely coarse, due primarily to the mineral assemblage. Chlorite and to a lesser extent actinolite typically exhibit small, flat or acicular crystal habits.

Greenschist facies[edit]

Greenschist facies is determined by the particular temperature and pressure conditions required to metamorphose basalt to form the typical greenschist facies minerals chlorite, actinolite, and albite. Greenschist facies results from low temperature, moderate pressure metamorphism. Metamorphic conditions which create typical greenschist facies assemblages are called the Barrovian Facies Sequence, and the lower-pressure Abukuma Facies Series. Temperatures of approximately 400 to 500 °C (750 to 930 °F) and depths of about 8 to 50 kilometres (5 to 31 miles) are the typical envelope of greenschist facies rocks. The equilibrium mineral assemblage of rocks subjected to greenschist facies conditions depends on primary rock composition.

In greater detail the greenschist facies is subdivided into subgreenschist, lower and upper greenschist. Lower temperatures are transitional with and overlap the prehnite-pumpellyite facies and higher temperatures overlap with and include sub-amphibolite facies.

If burial continues along Barrovian Sequence metamorphic trajectories, greenschist facies gives rise to amphibolite facies assemblages, dominated by amphibole and eventually to granulite facies. Lower pressure, normally contact metamorphism produces albite-epidote hornfels while higher pressures at great depth produces eclogite.

Oceanic basalts in the vicinity of mid-ocean ridges typically exhibit sub-greenschist alteration. The greenstone belts of the various archean cratons are commonly altered to the greenschist facies. These ancient rocks are noted as host rocks for a variety of ore deposits in Australia, Namibia and Canada.

Culture[edit]

Europe[edit]

Greenschist rocks have been used to make axes across Europe. Several sites including Langdale axe industry have been identified.

Eastern North America[edit]

A form of chlorite schist was popular in prehistoric Native American communities for the production of axes and celts, as well as ornamental items. In the Middle Woodland period, greenschist was one of the many trade items that were part of the Hopewell culture exchange network, sometimes transported over thousands of kilometers.

During the time of the Mississippian culture, the polity of Moundville apparently had some control over the production and distribution of greenschist. The Moundville source has been shown to be from two localities in the Hillabee Formation of central and eastern Alabama.

See also[edit]

References[edit]