Antiseptic

From Wikipedia, the free encyclopedia - View original article

 
  (Redirected from Germicide)
Jump to: navigation, search

Antiseptics (from Greek ἀντί: anti, '"against"[1] + σηπτικός: sēptikos, "putrefactive"[2]) are antimicrobial substances that are applied to living tissue/skin to reduce the possibility of infection, sepsis, or putrefaction. Antiseptics are generally distinguished from antibiotics by the latter's ability to be transported through the lymphatic system to destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects.

Some antiseptics are true germicides, capable of destroying microbes (bacteriocidal), while others are bacteriostatic and only prevent or inhibit their growth.

Antibacterials are antiseptics that have the proven ability to act against bacteria. Microbicides which destroy virus particles are called viricides or antivirals.

Usage in surgery[edit]

Joseph Lister

The widespread introduction of antiseptic surgical methods followed the publishing of the paper Antiseptic Principle of the Practice of Surgery in 1867 by Joseph Lister, inspired by Louis Pasteur's germ theory of putrefaction. In this paper, Lister advocated the use of carbolic acid (phenol) as a method of ensuring that any germs present were killed. Some of this work was anticipated by:

Functionality[edit]

Bacterial growth requires a food supply, moisture, oxygen (if the bacteria are obligate aerobes), and a certain minimum temperature (see bacteriology). These conditions have been studied and dealt with in food preservation and the ancient practice of embalming the dead, which is the earliest known systematic use of antiseptics.

In early inquiries before microbes were understood, much emphasis was given to the prevention of putrefaction, and procedures were carried out to determine the amount of agent that must be added to a given solution to prevent the development of pus and putrefaction; however, due to a lack of a developed understanding of germ theory, this method was inaccurate and, today, an antiseptic is judged by its effect on pure cultures of a defined microbe and/or its vegetative and spore forms. The standardization of antiseptics has been implemented in many instances, and a water solution of phenol of a certain fixed strength is now used as the standard to which other antiseptics are compared.

Some common antiseptics[edit]

A bottle of ethanol (95%) - an antiseptic

Evolved resistance[edit]

By continued exposure to antibiotics, bacteria may evolve to the point where they are no longer harmed by these compounds.[14]

In contrast, bacteria can develop a resistance to antiseptics, but the effect is generally less pronounced.[15]

The mechanism by which bacteria evolve may vary in response to different antiseptics. Low concentrations of an antiseptic may encourage growth of a bacteria strain that is resistant to the antiseptic, where a higher concentration of the antiseptic would simply kill the bacteria. In addition, use of an excessively high concentration of an antiseptic may cause tissue damage or slow the process of wound healing.[8] Consequently, antiseptics are most effective when used at the correct concentration—a high enough concentration to kill harmful bacteria, fungi or virii, but a low enough concentration to avoid damage to the tissue.

See also[edit]

Notes[edit]

  1. ^ ἀντί, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. ^ σηπτικός, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  3. ^ Eming SA, Krieg T, Davidson JM (2007). "Inflammation in wound repair: molecular and cellular mechanisms". J. Invest. Dermatol. 127 (3): 514–25. doi:10.1038/sj.jid.5700701. PMID 17299434. 
  4. ^ Edwards, H, 1976. Theodoric of Cervia, a medieval antiseptic surgeon, Proceedings of the Royal Society, 69 (3) pages=553–5 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864551/?page=1 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864551/?page=2
  5. ^ http://www.lds.org/scriptures/dc-testament/dc/89.1-9?lang=eng#0
  6. ^ Best M, Neuhauser D (2004). "Ignaz Semmelweis and the birth of infection control". Qual Saf Health Care 13 (3): 233–4. doi:10.1136/qhc.13.3.233. PMC 1743827. PMID 15175497. 
  7. ^ Wilgus TA, Bergdall VK, Dipietro LA, Oberyszyn TM (2005). "Hydrogen peroxide disrupts scarless fetal wound repair". Wound Repair Regen 13 (5): 513–9. doi:10.1111/j.1067-1927.2005.00072.x. PMID 16176460. 
  8. ^ a b http://www.medscape.com/viewarticle/456300_3
  9. ^ Kaehn K (2010). "Polihexanide: a safe and highly effective biocide". Skin Pharmacol Physiol. 23 Suppl: 7–16. doi:10.1159/000318237. PMID 20829657. 
  10. ^ Eberlein T, Assadian O (2010). "Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination". Skin Pharmacol Physiol. 23 Suppl: 45–51. doi:10.1159/000318267. PMID 20829662. 
  11. ^ Eberlein T, Haemmerle G, Signer M, et al. (January 2012). "Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds". J Wound Care 21 (1): 12, 14–6, 18–20. PMID 22240928. 
  12. ^ Malik, Y; Goyal, S (2006). "Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate". International Journal of Food Microbiology 109 (1–2): 160–3. doi:10.1016/j.ijfoodmicro.2005.08.033. PMID 16540196. 
  13. ^ Zamani, M; Sharifi Tehrani, A; Ali Abadi, AA (2007). "Evaluation of antifungal activity of carbonate and bicarbonate salts alone or in combination with biocontrol agents in control of citrus green mold". Communications in agricultural and applied biological sciences 72 (4): 773–7. PMID 18396809. 
  14. ^ CDC - Antibacterial Household Products: Cause for Concern (Stuart B. Levy)Tufts University School of Medicine, Boston, Massachusetts, USA (Presentation from the 2000 Emerging Infectious Diseases Conference in Atlanta, Georgia)
  15. ^ http://content.stockpr.com/qmdt/media/5e964c580a351c19008000660d79c9b4.pdf

References[edit]

External links[edit]