Genome

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
An image of the 46 chromosomes making up the diploid genome of a human male. (The mitochondrial chromosome is not shown.)

In modern molecular biology and genetics, the genome is the entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of viruses, in RNA. The genome includes both the genes and the non-coding sequences of the DNA/RNA.[1]

Origin of term[edit]

The term was created in 1920 by Hans Winkler,[2] professor of botany at the University of Hamburg, Germany. The Oxford English Dictionary suggests the name to be a blend of the words gene and chromosome. A few related -ome words already existed—such as biome, rhizome and, more recently, connectome—forming a vocabulary into which genome fits systematically.[3]

Overview[edit]

Some organisms have multiple copies of chromosomes: diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half the number of chromosomes of the somatic cell and the genome is a full set of chromosomes in a gamete. The halving of the genetic material in gametes is accomplished by the segregation of homologous chromosomes during meiosis.[4] In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the genome. The term genome can be applied specifically to mean what is stored on a complete set of nuclear DNA (i.e., the "nuclear genome") but can also be applied to what is stored within organelles that contain their own DNA, as with the "mitochondrial genome" or the "chloroplast genome". Additionally, the genome can comprise non-chromosomal genetic elements such as viruses, plasmids, and transposable elements.[5]

When people say that the genome of a sexually reproducing species has been "sequenced", typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as a "genome sequence" may be a composite read from the chromosomes of various individuals. Colloquially, the phrase "genetic makeup" is sometimes used to signify the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.

Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.

An analogy to the human genome stored on DNA is that of instructions stored in a book:

Sequencing and mapping[edit]

In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The next year, Phage Φ-X174, with only 5386 base pairs, became the first DNA-genome project to be completed, by Fred Sanger. The first complete genome sequences for representatives from all 3 domains of life were released within a short period during the mid-1990s. The first bacterial genome to be sequenced was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with the 16 chromosomes of budding yeast Saccharomyces cerevisiae being released as the result of a European-led effort begun in the mid-1980s. Shortly afterward, in 1996, the first genome sequence for an archaeon, Methanococcus jannaschii, was completed, again by The Institute for Genomic Research.

The development of new technologies has made it dramatically easier and cheaper to do sequencing, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information.[6] Among the thousands of completed genome sequencing projects include those for mouse, rice, the plant Arabidopsis thaliana, the puffer fish, and bacteria like E. coli.

New sequencing technologies, such as massive parallel sequencing have also opened up the prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine. A major step toward that goal was the completion in 2007 of the full genome of James D. Watson, one of the co-discoverers of the structure of DNA.[7]

Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome. The Human Genome Project was organized to map and to sequence the human genome. A fundamental step in the project was the release of a detailed genomic map by Jean Weissenbach and his team at the Genoscope in Paris.[8][9]

Genome compositions[edit]

Genome composition is used to describe the make up of contents of a haploid genome, which should include genome size, proportions of non-repetitive DNA and repetitive DNA in details. By comparing the genome compositions between genomes, scientists can better understand the evolutionary history of a given genome.

When talking about genome composition, one should distinguish between prokaryotes and eukaryotes as the big differences on contents structure they have. In prokaryotes, most of the genome (85-90%) is non-repetitive DNA, which means coding DNA mainly forms it, while non-coding regions only take a small part.[10] On the contrary, eukaryotes have the feature of exon-intron organization of protein coding genes; the variation of repetitive DNA content in eukaryotes is also extremely high. When refer to mammalians and plants, the major part of genome is composed by repetitive DNA.[11]

Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, "genome" is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, "genome" describes all of the genes and information on non-coding DNA that have the potential to be present.

In eukaryotes such as plants, protozoa and animals, however, "genome" carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the "mitochondrial genome". The DNA found within the chloroplast may be referred to as the "plastome".

Genome size[edit]

Log-log plot of the total number of annotated proteins in genomes submitted to GenBank as a function of genome size.[12]

Genome size is the total number of DNA base pairs in one copy of a haploid genome. The genome size is positively correlated with the morphological complexity among prokaryotes and lower eukaryotes; however, after mollusks and all the other higher eukaryotes above, this correlation is no longer effective.[11][13] This phenomenon also indicates the mighty influence coming from repetitive DNA act on the genomes.

Since genomes are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see Developmental biology). The work is both in vivo and in silico.[14][15]

Organism typeOrganismGenome size
(base pairs)
Note
VirusPorcine circovirus type 11,7591.8kbSmallest viruses replicating autonomously in eukaryotic cells.[16]
VirusBacteriophage MS23,5693.5kbFirst sequenced RNA-genome[17]
VirusSV405,2245.2kb[18]
VirusPhage Φ-X1745,3865.4kbFirst sequenced DNA-genome[19]
VirusHIV9,7499.7kb[20]
VirusPhage λ48,50248kbOften used as a vector for the cloning of recombinant DNA.

[21] [22] [23]

VirusMegavirus1,259,1971.3MbUntil 2013 the largest known viral genome.[24]
VirusPandoravirus salinus2,470,0002.47MbLargest known viral genome.[25]
BacteriumHaemophilus influenzae1,830,0001.8MbFirst genome of a living organism sequenced, July 1995[26]
BacteriumCarsonella ruddii159,662160kbSmallest non-viral genome.[27]
BacteriumBuchnera aphidicola600,000600kb[28]
BacteriumWigglesworthia glossinidia700,000700Kb
BacteriumEscherichia coli4,600,0004.6Mb[29]
BacteriumSolibacter usitatus (strain Ellin 6076)9,970,00010Mb[30]
AmoeboidPolychaos dubium ("Amoeba" dubia)670,000,000,000670GbLargest known genome.[31] (Disputed[32])
PlantArabidopsis thaliana157,000,000157MbFirst plant genome sequenced, December 2000.[33]
PlantGenlisea margaretae63,400,00063MbSmallest recorded flowering plant genome, 2006.[33]
PlantFritillaria assyrica130,000,000,000130Gb
PlantPopulus trichocarpa480,000,000480MbFirst tree genome sequenced, September 2006[34]
PlantParis japonica (Japanese-native, pale-petal)150,000,000,000150GbLargest plant genome known
MossPhyscomitrella patens480,000,000480MbFirst genome of a bryophyte sequenced, January 2008.[35]
YeastSaccharomyces cerevisiae12,100,00012.1MbFirst eukaryotic genome sequenced, 1996[36]
FungusAspergillus nidulans30,000,00030Mb
NematodeCaenorhabditis elegans100,300,000100MbFirst multicellular animal genome sequenced, December 1998[37]
NematodePratylenchus coffeae20,000,00020MbSmallest animal genome known[38]
InsectDrosophila melanogaster (fruit fly)130,000,000130Mb[39]
InsectBombyx mori (silk moth)432,000,000432Mb

14,623 predicted genes[40]

InsectApis mellifera (honey bee)236,000,000236Mb
InsectSolenopsis invicta (fire ant)480,000,000480Mb[41]
FishTetraodon nigroviridis (type of puffer fish)385,000,000390MbSmallest vertebrate genome known estimated to be 340 Mb[42][43] - 385 Mb.[44]
MammalMus musculus2,700,000,0002.7Gb[45]
MammalHomo sapiens3,200,000,0003.2GbHomo sapiens estimated genome size 3.2 billion bp[46]

Initial sequencing and analysis of the human genome[47]

FishProtopterus aethiopicus (marbled lungfish)130,000,000,000130GbLargest vertebrate genome known

Proportion of non-repetitive DNA[edit]

The proportion of non-repetitive DNA is calculated by using length of non-repetitive DNA divided by genome size. Protein-coding genes and RNA-coding genes are generally non-repetitive DNA.[48] Bigger genome does not mean more genes, and the proportion of non-repetitive DNA decreases along with the increase of genome size in higher eukaryotes.[11]

It had been found that the proportion of non-repetitive DNA can vary a lot between species. Some E. coli as prokaryotes only have non-repetitive DNA, lower eukaryotes such as C. elegans and fruit fly, still possess more non-repetitive DNA than repetitive DNA.[11][49] Higher eukaryotes tend to have more repetitive DNA than non-repetitive one. In some plants and amphibians, the proportion of non-repetitive DNA is no more than 20%, becoming a minority component.[11]

Proportion of repetitive DNA[edit]

The proportion of repetitive DNA is calculated by using length of repetitive DNA divide by genome size. There are two categories of repetitive DNA in genome: tandem repeats and interspersed repeats.[50]

Tandem repeats[edit]

Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion,[51] satellite DNA and microsatellites are forms of tandem repeats in the genome.[52] Although tandem repeats count for a significant proportion in genome, the largest proportion in mammalian is the other type, interspersed repeats.

Interspersed repeats[edit]

Interspersed repeats mainly come from transposable elements (TEs), but they also include some protein coding gene families and pseudogenes. Transposable elements are able to integrate into the genome at another site within the cell.[10][53] It is believed that TEs are an important driving force on genome evolution of higher eukaryotes.[54] TEs can be classified into two categories, Class 1 (retrotransposons) and Class 2 (DNA transposons).[53]

Retrotransposons[edit]

Retrotransposons can be transcribed into RNA, which are then duplicated at another site into the genome.[55] Retrotransposons can be divided into Long terminal repeats (LTRs) and Non-Long Terminal Repeats (Non-LTR).[54]

Long Terminal Repeats (LTRs) 
similar to retroviruses, which have both gag and pol genes to make cDNA from RNA and proteins to insert into genome, but LTRs can only act within the cell as they lack the env gene in retroviruses.[53] It has been reported that LTRs consist of the largest fraction in most plant genome and might account for the huge variation in genome size.[56]
Non-Long Terminal Repeats (Non-LTRs) 
can be divided into long interspersed elements (LINEs), short interspersed elements (SINEs) and Penelope-like elements. In Dictyostelium discoideum, there is another DIRS-like elements belong to Non-LTRs. Non-LTRs are widely spread in eukaryotic genomes.[57]
Long interspersed elements (LINEs) 
are able to encode two Open Reading Frames (ORFs) to generate transcriptase and endonuclease, which are essential in retrotransposition. The human genome has around 500,000 LINEs, taking around 17% of the genome.[58]
Short interspersed elements (SINEs) 
are usually less than 500 base pairs and need to co-opt with the LINEs machinery to function as nonautonomous retrotransposons.[59] The Alu element is the most common SINEs found in primates, it has a length of about 350 base pairs and takes about 11% of the human genome with around 1,500,000 copies.[54]
DNA transposons[edit]

DNA transposons generally move by "cut and paste" in the genome, but duplication has also been observed. Class 2 TEs do not use RNA as intermediate and are popular in bacteria, in metazoan it has also been found.[54]

Genome evolution[edit]

Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as chromosome number (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).

Duplications play a major role in shaping the genome. Duplication may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplication of entire chromosomes or even entire genomes. Such duplication's are probably fundamental to the creation of genetic novelty.

Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.

See also[edit]

References[edit]

  1. ^ Ridley, M. (2006). Genome. New York, NY: Harper Perennial. ISBN 0-06-019497-9
  2. ^ Winkler, HL (1920). Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Jena: Verlag Fischer. 
  3. ^ Lederberg, Joshua; McCray, Alexa T. (2001). "'Ome Sweet 'Omics -- A Genealogical Treasury of Words" (PDF). The Scientist 15 (7). 
  4. ^ Griffiths JF, Gelbart WM, Lewontin RC, Wessler SR, Suzuki DT, Miller JH (2005). Introduction to Genetic Analysis. New York: W.H. Freeman and Co. pp. 34–40, 473–476, 626–629. ISBN 0-7167-4939-4. 
  5. ^ Madigan M, Martinko J (editors) (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1. 
  6. ^ "Genome Home". 2010-12-08. Retrieved 2011-01-27. 
  7. ^ Wade, Nicholas (2007-05-31). "Genome of DNA Pioneer Is Deciphered". The New York Times. Retrieved 2010-04-02. 
  8. ^ "What's a Genome?". Genomenewsnetwork.org. 2003-01-15. Retrieved 2011-01-27. 
  9. ^ NCBI_user_services (2004-03-29). "Mapping Factsheet". Retrieved 2011-01-27. 
  10. ^ a b Koonin, Eugene V.; Wolf, Yuri I. (NaN undefined NaN). "Constraints and plasticity in genome and molecular-phenome evolution". Nature Reviews Genetics 11 (7): 487–498. doi:10.1038/nrg2810. PMC 3273317. PMID 20548290. 
  11. ^ a b c d e Lewin, Benjamin (2004). Genes VIII (8th ed.). Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 0-13-143981-2. 
  12. ^ Koonin, Eugene V. (2011-08-31). The Logic of Chance: The Nature and Origin of Biological Evolution. FT Press. ISBN 9780132542494. 
  13. ^ Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (3 January 2007). "Eukaryotic genome size databases". Nucleic Acids Research 35 (Database): D332–D338. doi:10.1093/nar/gkl828. 
  14. ^ Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). "Essential genes of a minimal bacterium". Proc Natl Acad Sci USA 103 (2): 425–30. Bibcode:2006PNAS..103..425G. doi:10.1073/pnas.0510013103. PMC 1324956. PMID 16407165. 
  15. ^ Forster AC, Church GM (2006). "Towards synthesis of a minimal cell". Mol Syst Biol. 2 (1): 45. doi:10.1038/msb4100090. PMC 1681520. PMID 16924266. 
  16. ^ Mankertz P (2008). "Molecular Biology of Porcine Circoviruses". Animal Viruses: Molecular Biology. Caister Academic Press. ISBN [[Special:BookSources/978-1-904455-22-6]|978-1-904455-22-6]]] Check |isbn= value (help). [http://www.horizonpress.com/avir. 
  17. ^ Fiers W, et al.; Contreras, R.; Duerinck, F.; Haegeman, G.; Iserentant, D.; Merregaert, J.; Min Jou, W.; Molemans, F. et al. (1976). "Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene". Nature 260 (5551): 500–507. Bibcode:1976Natur.260..500F. doi:10.1038/260500a0. PMID 1264203. 
  18. ^ Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). "Complete nucleotide sequence of SV40 DNA". Nature 273 (5658): 113–120. Bibcode:1978Natur.273..113F. doi:10.1038/273113a0. PMID 205802. 
  19. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). "Nucleotide sequence of bacteriophage phi X174 DNA". Nature 265 (5596): 687–695. Bibcode:1977Natur.265..687S. doi:10.1038/265687a0. PMID 870828. 
  20. ^ "Virology - Human Immunodeficiency Virus And Aids, Structure: The Genome And Proteins Of HIV". Pathmicro.med.sc.edu. 2010-07-01. Retrieved 2011-01-27. 
  21. ^ Thomason, Lynn; Court, Donald L.; Bubunenko, Mikail; Costantino, Nina; Wilson, Helen; Datta, Simanti; Oppenheim, Amos (2007). "Recombineering: genetic engineering in bacteria using homologous recombination". Current Protocols in Molecular Biology. Chapter 1: Unit 1.16. doi:10.1002/0471142727.mb0116s78. ISBN 0471142727. PMID 18265390. 
  22. ^ Court, D. L.; Oppenheim, A. B.; Adhya, S. L. (2007). "A new look at bacteriophage lambda genetic networks". Journal of Bacteriology 189 (2): 298–304. doi:10.1128/JB.01215-06. PMC 1797383. PMID 17085553. 
  23. ^ Sanger, F.; Coulson, A.R.; Hong, G.F.; Hill, D.F.; Petersen, G.B. (1982). "Nucleotide sequence of bacteriophage lambda DNA". Journal of Molecular Biology 162 (4): 729–73. doi:10.1016/0022-2836(82)90546-0. PMID 6221115. 
  24. ^ Legendre, M; Arslan, D; Abergel, C; Claverie, JM (2012). "Genomics of Megavirus and the elusive fourth domain of life| journal". Communicative & Integrative Biology 5 (1): 102–106. doi:10.4161/cib.18624. PMC 3291303. 
  25. ^ Philippe, N.; Legendre, M.; Doutre, G.; Coute, Y.; Poirot, O.; Lescot, M.; Arslan, D.; Seltzer, V.; Bertaux, L.; Bruley, C.; Garin, J.; Claverie, J.-M.; Abergel, C. (2013). "Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes". Science 341 (6143): 281. doi:10.1126/science.1239181. 
  26. ^ Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science 269 (5223): 496–512. Bibcode:1995Sci...269..496F. doi:10.1126/science.7542800. PMID 7542800. 
  27. ^ Nakabachi A, Yamashita A, Toh H, et al. (October 2006). "The 160-kilobase genome of the bacterial endosymbiont Carsonella". Science 314 (5797): 267. doi:10.1126/science.1134196. PMID 17038615. 
  28. ^ Shigenobu, S; Watanabe, H; Hattori, M; Sakaki, Y; Ishikawa, H (2000 Sep 7). "Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS". Nature 407 (6800): 81–6. doi:10.1038/35024074. PMID 10993077. 
  29. ^ Frederick R. Blattner, Guy Plunkett III, et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503. 
  30. ^ Challacombe, Jean F.; Eichorst, Stephanie A.; Hauser, Loren; Land, Miriam; Xie, Gary; Kuske, Cheryl R.; Steinke, Dirk (15 September 2011). "Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076". In Steinke, Dirk. PLoS ONE 6 (9): e24882. Bibcode:2011PLoSO...624882C. doi:10.1371/journal.pone.0024882. PMC 3174227. PMID 21949776. 
  31. ^ Parfrey LW, Lahr DJG, Katz LA (2008). "The Dynamic Nature of Eukaryotic Genomes". Molecular Biology and Evolution 25 (4): 787–94. doi:10.1093/molbev/msn032. PMC 2933061. PMID 18258610. 
  32. ^ ScienceShot: Biggest Genome Ever, comments: "The measurement for Amoeba dubia and other protozoa which have been reported to have very large genomes were made in the 1960s using a rough biochemical approach which is now considered to be an unreliable method for accurate genome size determinations."
  33. ^ a b Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, and Barthlott W (2006). "Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size". Plant Biology 8 (6): 770–777. doi:10.1055/s-2006-924101. PMID 17203433. 
  34. ^ Tuskan, GA; Difazio, S; Jansson, S; Bohlmann, J; Grigoriev, I; Hellsten, U; Putnam, N; Ralph, S; Rombauts, S; Salamov, A; Schein, J; Sterck, L; Aerts, A; Bhalerao, RR; Bhalerao, RP; Blaudez, D; Boerjan, W; Brun, A; Brunner, A; Busov, V; Campbell, M; Carlson, J; Chalot, M; Chapman, J; Chen, GL; Cooper, D; Coutinho, PM; Couturier, J; Covert, S; Cronk, Q; Cunningham, R; Davis, J; Degroeve, S; Déjardin, A; Depamphilis, C; Detter, J; Dirks, B; Dubchak, I; Duplessis, S; Ehlting, J; Ellis, B; Gendler, K; Goodstein, D; Gribskov, M; Grimwood, J; Groover, A; Gunter, L; Hamberger, B; Heinze, B; Helariutta, Y; Henrissat, B; Holligan, D; Holt, R; Huang, W; Islam-Faridi, N; Jones, S; Jones-Rhoades, M; Jorgensen, R; Joshi, C; Kangasjärvi, J; Karlsson, J; Kelleher, C; Kirkpatrick, R; Kirst, M; Kohler, A; Kalluri, U; Larimer, F; Leebens-Mack, J; Leplé, JC; Locascio, P; Lou, Y; Lucas, S; Martin, F; Montanini, B; Napoli, C; Nelson, DR; Nelson, C; Nieminen, K; Nilsson, O; Pereda, V; Peter, G; Philippe, R; Pilate, G; Poliakov, A; Razumovskaya, J; Richardson, P; Rinaldi, C; Ritland, K; Rouzé, P; Ryaboy, D; Schmutz, J; Schrader, J; Segerman, B; Shin, H; Siddiqui, A; Sterky, F; Terry, A; Tsai, CJ; Uberbacher, E; Unneberg, P; Vahala, J; Wall, K; Wessler, S; Yang, G; Yin, T; Douglas, C; Marra, M; Sandberg, G; Van de Peer, Y; Rokhsar, D (2006 Sep 15). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. PMID 16973872. 
  35. ^ Lang D, Zimmer AD, Rensing SA, Reski R (October 2008). "Exploring plant biodiversity: the Physcomitrella genome and beyond". Trends Plant Sci 13 (10): 542–549. doi:10.1016/j.tplants.2008.07.002. PMID 18762443. 
  36. ^ "Saccharomyces Genome Database". Yeastgenome.org. Retrieved 2011-01-27. 
  37. ^ The C. elegans Sequencing Consortium (1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science 282 (5396): 2012–2018. doi:10.1126/science.282.5396.2012. PMID 9851916. 
  38. ^ Gregory TR (2005). "Animal Genome Size Database". http://www.genomesize.com. 
  39. ^ Adams MD, Celniker SE, Holt RA, et al. (2000). "The genome sequence of Drosophila melanogaster". Science 287 (5461): 2185–95. Bibcode:2000Sci...287.2185.. doi:10.1126/science.287.5461.2185. PMID 10731132. Retrieved 2007-05-25. 
  40. ^ The International Silkworm Genome (2008). "The genome of a lepidopteran model insect, the silkworm Bombyx mori". Insect Biochemistry and Molecular Biology 38 (12): 1036–1045. doi:10.1016/j.ibmb.2008.11.004. PMID 19121390.  edit
  41. ^ Wurm Y et al.; Wang, J.; Riba-Grognuz, O.; Corona, M.; Nygaard, S.; Hunt, B. G.; Ingram, K. K.; Falquet, L. et al. (2011). "The genome of the fire ant Solenopsis invicta". PNAS 108 (14): 5679–5684. Bibcode:2011PNAS..108.5679W. doi:10.1073/pnas.1009690108. PMC 3078418. PMID 21282665. Retrieved 2011-02-01. 
  42. ^ Crollius, H. R.; Jaillon, O; Dasilva, C; Ozouf-Costaz, C; Fizames, C; Fischer, C; Bouneau, L; Billault, A et al. (NaN undefined NaN). "Characterization and Repeat Analysis of the Compact Genome of the Freshwater Pufferfish Tetraodon nigroviridis". Genome Research 10 (7): 939–949. doi:10.1101/gr.10.7.939. PMC 310905. PMID 10899143. 
  43. ^ Jaillon, Olivier; Aury, Jean-Marc; Brunet, Frédéric; Petit, Jean-Louis; Stange-Thomann, Nicole; Mauceli, Evan; Bouneau, Laurence; Fischer, Cécile; Ozouf-Costaz, Catherine; Bernot, Alain; Nicaud, Sophie; Jaffe, David; Fisher, Sheila; Lutfalla, Georges; Dossat, Carole; Segurens, Béatrice; Dasilva, Corinne; Salanoubat, Marcel; Levy, Michael; Boudet, Nathalie; Castellano, Sergi; Anthouard, Véronique; Jubin, Claire; Castelli, Vanina; Katinka, Michael; Vacherie, Benoît; Biémont, Christian; Skalli, Zineb; Cattolico, Laurence; Poulain, Julie; de Berardinis, Véronique; Cruaud, Corinne; Duprat, Simone; Brottier, Philippe; Coutanceau, Jean-Pierre; Gouzy, Jérôme; Parra, Genis; Lardier, Guillaume; Chapple, Charles; McKernan, Kevin J.; McEwan, Paul; Bosak, Stephanie; Kellis, Manolis; Volff, Jean-Nicolas; Guigó, Roderic; Zody, Michael C.; Mesirov, Jill; Lindblad-Toh, Kerstin; Birren, Bruce; Nusbaum, Chad; Kahn, Daniel; Robinson-Rechavi, Marc; Laudet, Vincent; Schachter, Vincent; Quétier, Francis; Saurin, William; Scarpelli, Claude; Wincker, Patrick; Lander, Eric S.; Weissenbach, Jean; Roest Crollius, Hugues (21 October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature 431 (7011): 946–957. Bibcode:2004Natur.431..946J. doi:10.1038/nature03025. PMID 15496914. 
  44. ^ "Tetraodon Project Information". Retrieved 17 October 2012. 
  45. ^ Church, DM; Goodstadt, L; Hillier, LW; Zody, MC; Goldstein, S; She, X; Bult, CJ; Agarwala, R; Cherry, JL; DiCuccio, M; Hlavina, W; Kapustin, Y; Meric, P; Maglott, D; Birtle, Z; Marques, AC; Graves, T; Zhou, S; Teague, B; Potamousis, K; Churas, C; Place, M; Herschleb, J; Runnheim, R; Forrest, D; Amos-Landgraf, J; Schwartz, DC; Cheng, Z; Lindblad-Toh, K; Eichler, EE; Ponting, CP; Mouse Genome Sequencing, Consortium (2009 May 5). "Lineage-specific biology revealed by a finished genome assembly of the mouse". In Roberts, Richard J. PLoS Biology 7 (5): e1000112. doi:10.1371/journal.pbio.1000112. PMC 2680341. PMID 19468303. 
  46. ^ http://www.ornl.gov/sci/techresources/Human_Genome/faq/compgen.shtml#genomesize
  47. ^ Venter, J. C.; Adams, M.; Myers, E.; Li, P.; Mural, R.; Sutton, G.; Smith, H.; Yandell, M.; Evans, C.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N. (2001). "The Sequence of the Human Genome". Science 291 (5507): 1304–1351. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995.  edit
  48. ^ Britten, RJ; Davidson, EH (1971 Jun). "Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty". The Quarterly review of biology 46 (2): 111–38. doi:10.1086/406830. PMID 5160087. 
  49. ^ Naclerio, G; Cangiano, G, Coulson, A, Levitt, A, Ruvolo, V, La Volpe, A (1992-07-05). "Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans". Journal of Molecular Biology 226 (1): 159–68. doi:10.1016/0022-2836(92)90131-3. PMID 1619649. 
  50. ^ Stojanovic, edited by Nikola (2007). Computational genomics : current methods. Wymondham: Horizon Bioscience. ISBN 1-904933-30-0. 
  51. ^ Li, YC; Korol, AB, Fahima, T, Beiles, A, Nevo, E (2002 Dec). "Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review". Molecular ecology 11 (12): 2453–65. doi:10.1046/j.1365-294X.2002.01643.x. PMID 12453231. 
  52. ^ Schlötterer, C (2000 Dec). "Microsatellite analysis indicates genetic differentiation of the neo-sex chromosomes in Drosophila americana americana". Heredity 85 (Pt 6): 610–6. doi:10.1046/j.1365-2540.2000.00797.x. PMID 11240628. 
  53. ^ a b c Wessler, S. R. (13 November 2006). "Eukaryotic Transposable Elements and Genome Evolution Special Feature: Transposable elements and the evolution of eukaryotic genomes". Proceedings of the National Academy of Sciences 103 (47): 17600–17601. Bibcode:2006PNAS..10317600W. doi:10.1073/pnas.0607612103. 
  54. ^ a b c d Kazazian, H. H. (12 March 2004). "Mobile Elements: Drivers of Genome Evolution". Science 303 (5664): 1626–1632. Bibcode:2004Sci...303.1626K. doi:10.1126/science.1089670. PMID 15016989. 
  55. ^ Deininger PL, Moran JV, Batzer MA, Kazazian, HH Jr (2003 Dec). "Mobile elements and mammalian genome evolution". Current opinion in genetics & development 13 (6): 651–8. doi:10.1016/j.gde.2003.10.013. PMID 14638329. 
  56. ^ Kidwell MG, Lisch DR (2000 Mar). "Transposable elements and host genome evolution". Trends in ecology & evolution 15 (3): 95–99. doi:10.1016/S0169-5347(99)01817-0. PMID 10675923. 
  57. ^ Richard G.-F., Kerrest A, Dujon B (3 December 2008). "Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes". Microbiology and Molecular Biology Reviews 72 (4): 686–727. doi:10.1128/MMBR.00011-08. PMC 2593564. PMID 19052325. 
  58. ^ Cordaux R, Batzer MA (1 October 2009). "The impact of retrotransposons on human genome evolution". Nature Reviews Genetics 10 (10): 691–703. doi:10.1038/nrg2640. PMC 2884099. PMID 19763152. 
  59. ^ Han, Jeffrey S.; Boeke, Jef D. (1 August 2005). "LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression?". BioEssays 27 (8): 775–784. doi:10.1002/bies.20257. PMID 16015595. 

Further reading[edit]

External links[edit]