G-code

From Wikipedia, the free encyclopedia - View original article

G-code
Paradigm(s)Procedural, Imperative
Designed byMassachusetts Institute of Technology
Appeared in1950s (first edition)
Major implementationsmany, mainly Siemens Sinumerik, FANUC, Haas, Heidenhain, Mazak. Generally there is one international standard—ISO 6983.
Filename extension(s).mpt, .mpf .nc and several others
 
Jump to: navigation, search
"RS-274" redirects here. For the photoplotter format, see Gerber format.
G-code
Paradigm(s)Procedural, Imperative
Designed byMassachusetts Institute of Technology
Appeared in1950s (first edition)
Major implementationsmany, mainly Siemens Sinumerik, FANUC, Haas, Heidenhain, Mazak. Generally there is one international standard—ISO 6983.
Filename extension(s).mpt, .mpf .nc and several others

G-code (also RS-274), which has many variants, is the common name for the most widely used numerical control (NC) programming language. It is used mainly in computer-aided manufacturing for controlling automated machine tools. G-code is sometimes called G programming language.

In fundamental terms, G-code is a language in which people tell computerized machine tools how to make something. The how is defined by instructions on where to move, how fast to move, and through what path to move. The most common situation is that, within a machine tool, a cutting tool is moved according to these instructions through a toolpath, cutting away excess material to leave only the finished workpiece. The same concept also extends to noncutting tools such as forming or burnishing tools, photoplotting, additive methods, and measuring instruments.

Implementations[edit]

The first implementation of a numerical control programming language was developed at the MIT Servomechanisms Laboratory in the late 1950s. In the decades since, many implementations have been developed by many (commercial and noncommercial) organizations. G-code has often been used in these implementations. The main standardized version used in the United States was settled by the Electronic Industries Alliance in the early 1960s.[citation needed] A final revision was approved in February 1980 as RS-274-D.[1] In other countries, the standard ISO 6983 is often used, but many European states use other standards. For example, DIN 66025 is used in Germany, and PN-73M-55256 and PN-93/M-55251 are used in Poland.

Extensions and variations have been added independently by control manufacturers and machine tool manufacturers, and operators of a specific controller must be aware of differences of each manufacturer's product.

One standardized version of G-code, known as BCL, is used only on very few machines.[citation needed]

During the 1970s through 1990s, many CNC machine tool builders attempted to overcome compatibility difficulties by standardizing on machine tool controllers built by Fanuc. Siemens was another market dominator in CNC controls, especially in Europe. In the 2010s, controller differences and incompatibility are not as troublesome because machining operations are developed with CAD/CAM applications that can output the appropriate G-code for a specific machine tool.

Some CNC machines use "conversational" programming, which is a wizard-like programming mode that either hides G-code or completely bypasses the use of G-code. Some popular examples are Southwestern Industries' ProtoTRAK, Mazak's Mazatrol, Hurco's Ultimax, Haas' Intuitive Programming System (IPS), and Mori Seiki's CAPS conversational software.

G-code began as a limited type of language that lacked constructs such as loops, conditional operators, and programmer-declared variables with natural-word-including names (or the expressions in which to use them). It was thus unable to encode logic; it was essentially just a way to "connect the dots" where many of the dots' locations were figured out longhand by the programmer. The latest implementations of G-code include such constructs, creating a language somewhat closer to a high-level programming language. Additionally, all primary manufacturers (e.g. Fanuc, Siemens, Heidenhain) provide access to PLC data, such as axis positioning data and tool data,[2] via variables which can be used by NC programs. These constructs make it easier to develop automation applications.

Specific codes[edit]

G-codes are also called preparatory codes, and are any word in a CNC program that begins with the letter G. Generally it is a code telling the machine tool what type of action to perform, such as:

There are other codes; the type codes can be thought of like registers in a computer.

Students and hobbyists have pointed out over the years that the term "G-code" referring to the language overall (using the mass sense of "code") is imprecise. It comes metonymically from the literal sense of the term, referring to one letter address among many in the language (G address, for preparatory commands) and to the specific codes (count sense) that can be formed with it (for example, G00, G01, G28). But every letter of the English alphabet is used somewhere in the language (although some letters' use is less common), so the name seems unfitting to people searching for strictly logical etymology. Nevertheless, "G-code" is indelibly established as the common name of the language.

Letter addresses[edit]

Some letter addresses are used only in milling or only in turning; most are used in both. Bold below are the letters seen most frequently throughout a program.

Sources: Smid 2008;[3] Smid 2010;[4] Green et al. 1996.[5]

VariableDescriptionCorollary info
AAbsolute or incremental position of A axis (rotational axis around X axis)
BAbsolute or incremental position of B axis (rotational axis around Y axis)
CAbsolute or incremental position of C axis (rotational axis around Z axis)
DDefines diameter or radial offset used for cutter compensation. D is used for depth of cut on lathes. It is used for aperture selection and commands on photoplotters.
EPrecision feedrate for threading on lathes
FDefines feed rateCommon units are distance per time for mills (inches per minute, IPM, or millimeters per minute, mm/min) and distance per revolution for lathes (inches per revolution, IPR, or millimeters per revolution, mm/rev)
GAddress for preparatory commandsG commands often tell the control what kind of motion is wanted (e.g., rapid positioning, linear feed, circular feed, fixed cycle) or what offset value to use.
HDefines tool length offset;
Incremental axis corresponding to C axis (e.g., on a turn-mill)
IDefines arc center in X axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles.
JDefines arc center in Y axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles.
KDefines arc center in Z axis for G02 or G03 arc commands.
Also used as a parameter within some fixed cycles, equal to L address.
LFixed cycle loop count;
Specification of what register to edit using G10
Fixed cycle loop count: Defines number of repetitions ("loops") of a fixed cycle at each position. Assumed to be 1 unless programmed with another integer. Sometimes the K address is used instead of L. With incremental positioning (G91), a series of equally spaced holes can be programmed as a loop rather than as individual positions.
G10 use: Specification of what register to edit (work offsets, tool radius offsets, tool length offsets, etc.).
MMiscellaneous functionAction code, auxiliary command; descriptions vary. Many M-codes call for machine functions, which is why people often say that the "M" stands for "machine", although it was not intended to.
NLine (block) number in program;
System parameter number to be changed using G10
Line (block) numbers: Optional, so often omitted. Necessary for certain tasks, such as M99 P address (to tell the control which block of the program to return to if not the default one) or GoTo statements (if the control supports those). N numbering need not increment by 1 (for example, it can increment by 10, 20, or 1000) and can be used on every block or only in certain spots throughout a program.
System parameter number: G10 allows changing of system parameters under program control.
OProgram nameFor example, O4501. For many years it was common for CNC control displays to use slashed zero glyphs to ensure effortless distinction of letter "O" from digit "0". Today's GUI controls often have a choice of fonts, like a PC does.
PServes as parameter address for various G and M codes
  • With G04, defines dwell time value.
  • Also serves as a parameter in some canned cycles, representing dwell times or other variables.
  • Also used in the calling and termination of subprograms. (With M98, it specifies which subprogram to call; with M99, it specifies which block number of the main program to return to.)
QPeck increment in canned cyclesFor example, G73, G83 (peck drilling cycles)
RDefines size of arc radius, or defines retract height in milling canned cyclesFor radii, not all controls support the R address for G02 and G03, in which case IJK vectors are used. For retract height, the "R level", as it's called, is returned to if G99 is programmed.
SDefines speed, either spindle speed or surface speed depending on modeData type = integer. In G97 mode (which is usually the default), an integer after S is interpreted as a number of rev/min (rpm). In G96 mode (CSS), an integer after S is interpreted as surface speed—sfm (G20) or m/min (G21). See also Speeds and feeds. On multifunction (turn-mill or mill-turn) machines, which spindle gets the input (main spindle or subspindles) is determined by other M codes.
TTool selectionTo understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. Programming on any particular machine tool requires knowing which method that machine uses. Ways of obtaining this training are mentioned in the comments for M06.
UIncremental axis corresponding to X axis (typically only lathe group A controls)
Also defines dwell time on some machines (instead of "P" or "X").
In these controls, X and U obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
VIncremental axis corresponding to Y axisUntil the 2000s, the V address was very rarely used, because most lathes that used U and W didn't have a Y-axis, so they didn't use V. (Green et al. 1996[5] did not even list V in their table of addresses.) That is still often the case, although the proliferation of live lathe tooling and turn-mill machining has made V address usage less rare than it used to be (Smid 2008[3] shows an example). See also G18.
WIncremental axis corresponding to Z axis (typically only lathe group A controls)In these controls, Z and W obviate G90 and G91, respectively. On these lathes, G90 is instead a fixed cycle address for roughing.
XAbsolute or incremental position of X axis.
Also defines dwell time on some machines (instead of "P" or "U").
YAbsolute or incremental position of Y axis
ZAbsolute or incremental position of Z axisThe main spindle's axis of rotation often determines which axis of a machine tool is labeled as Z.

List of G-codes commonly found on FANUC and similarly designed controls[edit]

Sources: Smid 2008;[3] Smid 2010;[4] Green et al. 1996.[5]

Note: Modal means a code stays in effect until replaced, or cancelled, by another permitted code. Non-Modal means it executes only once. See, for example, codes G09, G61 & G64 below.
CodeDescriptionMilling
( M )
Turning
( T )
Corollary info
G00Rapid positioningMTOn 2- or 3-axis moves, G00 (unlike G01) traditionally does not necessarily move in a single straight line between start point and end point. It moves each axis at its max speed until its vector is achieved. Shorter vector usually finishes first (given similar axis speeds). This matters because it may yield a dog-leg or hockey-stick motion, which the programmer needs to consider depending on what obstacles are nearby, to avoid a crash. Some machines offer interpolated rapids as a feature for ease of programming (safe to assume a straight line).
G01Linear interpolationMTThe most common workhorse code for feeding during a cut. The program specs the start and end points, and the control automatically calculates (interpolates) the intermediate points to pass through that will yield a straight line (hence "linear"). The control then calculates the angular velocities at which to turn the axis leadscrews via their servomotors or stepper motors. The computer performs thousands of calculations per second, and the motors react quickly to each input. Thus the actual toolpath of the machining takes place with the given feedrate on a path that is accurately linear to within very small limits.
G02Circular interpolation, clockwiseMTVery similar in concept to G01. Again, the control interpolates intermediate points and commands the servo- or stepper motors to rotate the amount needed for the leadscrew to translate the motion to the correct tool tip positioning. This process repeated thousands of times per minute generates the desired toolpath. In the case of G02, the interpolation generates a circle rather than a line. As with G01, the actual toolpath of the machining takes place with the given feedrate on a path that accurately matches the ideal (in G02's case, a circle) to within very small limits. In fact, the interpolation is so precise (when all conditions are correct) that milling an interpolated circle can obviate operations such as drilling, and often even fine boring. Addresses for radius or arc center: G02 and G03 take either an R address (for the radius desired on the part) or IJK addresses (for the component vectors that define the vector from the arc start point to the arc center point). Cutter comp: On most controls you cannot start G41 or G42 in G02 or G03 modes. You must already have compensated in an earlier G01 block. Often a short linear lead-in movement will be programmed, merely to allow cutter compensation before the main event, the circle-cutting, begins. Full circles: When the arc start point and the arc end point are identical, a 360° arc, a full circle, will be cut. (Some older controls cannot support this because arcs cannot cross between quadrants of the cartesian system. Instead, four quarter-circle arcs are programmed back-to-back.)
G03Circular interpolation, counterclockwiseMTSame corollary info as for G02.
G04DwellMTTakes an address for dwell period (may be X, U, or P). The dwell period is specified by a control parameter, typically set to milliseconds. Some machines can accept either X1.0 (s) or P1000 (ms), which are equivalent. Choosing dwell duration: Often the dwell needs only to last one or two full spindle rotations. This is typically much less than one second. Be aware when choosing a duration value that a long dwell is a waste of cycle time. In some situations it won't matter, but for high-volume repetitive production (over thousands of cycles), it is worth calculating that perhaps you only need 100 ms, and you can call it 200 to be safe, but 1000 is just a waste (too long).
G05 P10000High-precision contour control (HPCC)M Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G05.1 Q1.AI Advanced Preview ControlM Uses a deep look-ahead buffer and simulation processing to provide better axis movement acceleration and deceleration during contour milling
G06.1Non Uniform Rational B Spline MachiningM Activates Non-Uniform Rational B Spline for complex curve and waveform machining (this code is confirmed in Mazatrol 640M ISO Programming)
G07Imaginary axis designationM  
G09Exact stop check, non-modalMTThe modal version is G61.
G10Programmable data inputMTModifies the value of work coordinate and tool offsets[6]
G11Data write cancelMT 
G12Full-circle interpolation, clockwiseM Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G13Full-circle interpolation, counterclockwiseM Fixed cycle for ease of programming 360° circular interpolation with blend-radius lead-in and lead-out. Not standard on Fanuc controls.
G17XY plane selectionM  
G18ZX plane selectionMTOn most CNC lathes (built 1960s to 2000s), ZX is the only available plane, so no G17 to G19 codes are used. This is now changing as the era begins in which live tooling, multitask/multifunction, and mill-turn/turn-mill gradually become the "new normal". But the simpler, traditional form factor will probably not disappear—it will just move over to make room for the newer configurations. See also V address.
G19YZ plane selectionM  
G20Programming in inchesMTSomewhat uncommon except in USA and (to lesser extent) Canada and UK. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time. The usual minimum increment in G20 is one ten-thousandth of an inch (0.0001"), which is a larger distance than the usual minimum increment in G21 (one thousandth of a millimeter, .001 mm, that is, one micrometre). This physical difference sometimes favors G21 programming.
G21Programming in millimeters (mm)MTPrevalent worldwide. However, in the global marketplace, competence with both G20 and G21 always stands some chance of being necessary at any time.
G28Return to home position (machine zero, aka machine reference point)MTTakes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G30Return to secondary home position (machine zero, aka machine reference point)MTTakes a P address specifying which machine zero point is desired, if the machine has several secondary points (P1 to P4). Takes X Y Z addresses which define the intermediate point that the tool tip will pass through on its way home to machine zero. They are in terms of part zero (aka program zero), NOT machine zero.
G31Skip function (used for probes and tool length measurement systems)M  
G32Single-point threading, longhand style (if not using a cycle, e.g., G76) TSimilar to G01 linear interpolation, except with automatic spindle synchronization for single-point threading.
G33Constant-pitch threadingM  
G33Single-point threading, longhand style (if not using a cycle, e.g., G76) TSome lathe controls assign this mode to G33 rather than G32.
G34Variable-pitch threadingM  
G40Tool radius compensation offMTTurn off cutter radius compensation (CRC). Cancels G41 or G42.
G41Tool radius compensation leftMTTurn on cutter radius compensation (CRC), left, for climb milling.
Milling: Given righthand-helix cutter and M03 spindle direction, G41 corresponds to climb milling (down milling). Takes an address (D or H) that calls an offset register value for radius.
Turning: Often needs no D or H address on lathes, because whatever tool is active automatically calls its geometry offsets with it. (Each turret station is bound to its geometry offset register.)

G41 and G42 for milling has been partially automated and obviated (although not completely) since CAM programming has become more common. CAM systems allow the user to program as if with a zero-diameter cutter. The fundamental concept of cutter radius compensation is still in play (i.e., that the surface produced will be distance R away from the cutter center), but the programming mindset is different; the human does not choreograph the toolpath with conscious, painstaking attention to G41, G42, and G40, because the CAM software takes care of it. The software has various CRC mode selections, such as computer, control, wear, reverse wear, off, some of which do not use G41/G42 at all (good for roughing, or wide finish tolerances), and others which use it so that the wear offset can still be tweaked at the machine (better for tight finish tolerances).

G42Tool radius compensation rightMTTurn on cutter radius compensation (CRC), right, for conventional milling. Similar corollary info as for G41. Given righthand-helix cutter and M03 spindle direction, G42 corresponds to conventional milling (up milling).
G43Tool height offset compensation negativeM Takes an address, usually H, to call the tool length offset register value. The value is negative because it will be added to the gauge line position. G43 is the commonly used version (vs G44).
G44Tool height offset compensation positiveM Takes an address, usually H, to call the tool length offset register value. The value is positive because it will be subtracted from the gauge line position. G44 is the seldom-used version (vs G43).
G45Axis offset single increaseM  
G46Axis offset single decreaseM  
G47Axis offset double increaseM  
G48Axis offset double decreaseM  
G49Tool length offset compensation cancelM Cancels G43 or G44.
G50Define the maximum spindle speed TTakes an S address integer which is interpreted as rpm. Without this feature, G96 mode (CSS) would rev the spindle to "wide open throttle" when closely approaching the axis of rotation.
G50Scaling function cancelM  
G50Position register (programming of vector from part zero to tool tip) TPosition register is one of the original methods to relate the part (program) coordinate system to the tool position, which indirectly relates it to the machine coordinate system, the only position the control really "knows". Not commonly programmed anymore because G54 to G59 (WCSs) are a better, newer method. Called via G50 for turning, G92 for milling. Those G addresses also have alternate meanings (which see). Position register can still be useful for datum shift programming. The "manual absolute" switch, which has very few useful applications in WCS contexts, was more useful in position register contexts, because it allowed the operator to move the tool to a certain distance from the part (for example, by touching off a 2.0000" gage) and then declare to the control what the distance-to-go shall be (2.0000).
G52Local coordinate system (LCS)M Temporarily shifts program zero to a new location. It is simply "an offset from an offset", that is, an additional offset added onto the WCS offset. This simplifies programming in some cases. The typical example is moving from part to part in a multipart setup. With G54 active, G52 X140.0 Y170.0 shifts program zero 140 mm over in X and 170 mm over in Y. When the part "over there" is done, G52 X0 Y0 returns program zero to normal G54 (by reducing G52 offset to nothing). The same result can also be achieved (1) using multiple WCS origins, G54/G55/G56/G57/G58/G59; (2) on newer controls, G54.1 P1/P2/P3/etc. (all the way up to P48); or (3) using G10 for programmable data input, in which the program can write new offset values to the offset registers. Which method to use depends on shop-specific application.
G53Machine coordinate systemMTTakes absolute coordinates (X,Y,Z,A,B,C) with reference to machine zero rather than program zero. Can be helpful for tool changes. Nonmodal and absolute only. Subsequent blocks are interpreted as "back to G54" even if it is not explicitly programmed.
G54 to G59Work coordinate systems (WCSs)MTHave largely replaced position register (G50 and G92). Each tuple of axis offsets relates program zero directly to machine zero. Standard is 6 tuples (G54 to G59), with optional extensibility to 48 more via G54.1 P1 to P48.
G54.1 P1 to P48Extended work coordinate systemsMTUp to 48 more WCSs besides the 6 provided as standard by G54 to G59. Note floating-point extension of G-code data type (formerly all integers). Other examples have also evolved (e.g., G84.2). Modern controls have the hardware to handle it.
G61Exact stop check, modalMTCan be canceled with G64. The non-modal version is G09.
G62Automatic corner overrideMT 
G64Default cutting mode (cancel exact stop check mode)MTCancels G61.
G70Fixed cycle, multiple repetitive cycle, for finishing (including contours) T 
G71Fixed cycle, multiple repetitive cycle, for roughing (Z-axis emphasis) T 
G72Fixed cycle, multiple repetitive cycle, for roughing (X-axis emphasis) T 
G73Fixed cycle, multiple repetitive cycle, for roughing, with pattern repetition T 
G73Peck drilling cycle for milling – high-speed (NO full retraction from pecks)M Retracts only as far as a clearance increment (system parameter). For when chipbreaking is the main concern, but chip clogging of flutes is not. Compare G83.
G74Peck drilling cycle for turning T 
G74Tapping cycle for milling, lefthand thread, M04 spindle directionM See notes at G84.
G75Peck grooving cycle for turning T 
G76Fine boring cycle for millingM Includes OSS and shift (oriented spindle stop and shift tool off centerline for retraction)
G76Threading cycle for turning, multiple repetitive cycle T 
G80Cancel canned cycleMTMilling: Cancels all cycles such as G73, G81, G83, etc. Z-axis returns either to Z-initial level or R level, as programmed (G98 or G99, respectively).
Turning: Usually not needed on lathes, because a new group-1 G address (G00 to G03) cancels whatever cycle was active.
G81Simple drilling cycleM No dwell built in
G82Drilling cycle with dwellM Dwells at hole bottom (Z-depth) for the number of milliseconds specified by the P address. Good for when hole bottom finish matters. Good for spot drilling because the divot will be certain to clean up evenly. Consider the "choosing dwell duration" note at G04.
G83Peck drilling cycle (full retraction from pecks)M Returns to R-level after each peck. Good for clearing flutes of chips. Compare G73.
G84Tapping cycle, righthand thread, M03 spindle directionM G74 and G84 are the righthand and lefthand "pair" for old-school tapping with a non-rigid toolholder ("tapping head" style). Compare the rigid tapping "pair", G84.2 and G84.3.
G84.2Tapping cycle, righthand thread, M03 spindle direction, rigid toolholderM See notes at G84. Rigid tapping synchronizes speed and feed according to the desired thread helix. That is, it synchronizes degrees of spindle rotation with microns of axial travel. Therefore it can use a rigid toolholder to hold the tap. This feature is not available on old machines or newer low-end machines, which must use "tapping head" motion (G74/G84).
G84.3Tapping cycle, lefthand thread, M04 spindle direction, rigid toolholderM See notes at G84 and G84.2.
G85boring cycle, feed in/feed outM 
  • Good cycle for a reamer.
  • In some cases good for single-point boring tool, although in other cases the lack of depth of cut on the way back out is bad for surface finish, in which case, G76 (OSS/shift) can be used instead.
  • If need dwell at hole bottom, see G89.
G86boring cycle, feed in/spindle stop/rapid outM Boring tool will leave a slight score mark on the way back out. Appropriate cycle for some applications; for others, G76 (OSS/shift) can be used instead.
G87boring cycle, backboringM For backboring. Returns to initial level only (G98); this cycle cannot use G99 because its R level is on the far side of the part, away from the spindle headstock.
G88boring cycle, feed in/spindle stop/manual operationM  
G89boring cycle, feed in/dwell/feed outM G89 is like G85 but with dwell added at bottom of hole.
G90Absolute programmingMT (B)Positioning defined with reference to part zero.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is instead a fixed cycle address for roughing.
G90Fixed cycle, simple cycle, for roughing (Z-axis emphasis) T (A)When not serving for absolute programming (above)
G91Incremental programmingMT (B)Positioning defined with reference to previous position.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), G90/G91 are not used for absolute/incremental modes. Instead, U and W are the incremental addresses and X and Z are the absolute addresses. On these lathes, G90 is a fixed cycle address for roughing.
G92Position register (programming of vector from part zero to tool tip)MT (B)Same corollary info as at G50 position register.
Milling: Always as above.
Turning: Sometimes as above (Fanuc group type B and similarly designed), but on most lathes (Fanuc group type A and similarly designed), position register is G50.
G92Threading cycle, simple cycle T (A) 
G94Feedrate per minuteMT (B)On group type A lathes, feedrate per minute is G98.
G94Fixed cycle, simple cycle, for roughing (X-axis emphasis) T (A)When not serving for feedrate per minute (above)
G95Feedrate per revolutionMT (B)On group type A lathes, feedrate per revolution is G99.
G96Constant surface speed (CSS) TVaries spindle speed automatically to achieve a constant surface speed. See speeds and feeds. Takes an S address integer, which is interpreted as sfm in G20 mode or as m/min in G21 mode.
G97Constant spindle speedMTTakes an S address integer, which is interpreted as rev/min (rpm). The default speed mode per system parameter if no mode is programmed.
G98Return to initial Z level in canned cycleM  
G98Feedrate per minute (group type A) T (A)Feedrate per minute is G94 on group type B.
G99Return to R level in canned cycleM  
G99Feedrate per revolution (group type A) T (A)Feedrate per revolution is G95 on group type B.

List of M-codes commonly found on FANUC and similarly designed controls[edit]

Sources: Smid 2008;[3] Smid 2010;[4] Green et al. 1996.[5]

Code  DescriptionMilling
( M )
Turning
( T )
Corollary info
M00Compulsory stopMTNon-optional—machine will always stop upon reaching M00 in the program execution.
M01Optional stopMTMachine will only stop at M01 if operator has pushed the optional stop button.
M02End of programMTProgram ends; execution may or may not return to program top (depending on the control); may or may not reset register values. M02 was the original program-end code, now considered obsolete, but still supported for backward compatibility.[7] Many modern controls treat M02 as equivalent to M30.[7] See M30 for additional discussion of control status upon executing M02 or M30.
M03Spindle on (clockwise rotation)MTThe speed of the spindle is determined by the address S, in either revolutions per minute (G97 mode; default) or surface feet per minute or [surface] meters per minute (G96 mode [CSS] under either G20 or G21). The right-hand rule can be used to determine which direction is clockwise and which direction is counter-clockwise.

Right-hand-helix screws moving in the tightening direction (and right-hand-helix flutes spinning in the cutting direction) are defined as moving in the M03 direction, and are labeled "clockwise" by convention. The M03 direction is always M03 regardless of local vantage point and local CW/CCW distinction.

M04Spindle on (counterclockwise rotation)MTSee comment above at M03.
M05Spindle stopMT 
M06Automatic tool change (ATC)MT (some-times)Many lathes do not use M06 because the T address itself indexes the turret.
Programming on any particular machine tool requires knowing which method that machine uses. To understand how the T address works and how it interacts (or not) with M06, one must study the various methods, such as lathe turret programming, ATC fixed tool selection, ATC random memory tool selection, the concept of "next tool waiting", and empty tools. These concepts are taught in textbooks such as Smid,[3] and online multimedia (videos, simulators, etc.); all of these teaching resources are usually paywalled to pay back the costs of their development. They are used in training classes for operators, both on-site and remotely (e.g., Tooling University).
M07Coolant on (mist)MT 
M08Coolant on (flood)MT 
M09Coolant offMT 
M10Pallet clamp onM For machining centers with pallet changers
M11Pallet clamp offM For machining centers with pallet changers
M13Spindle on (clockwise rotation) and coolant on (flood)M This one M-code does the work of both M03 and M08. It is not unusual for specific machine models to have such combined commands, which make for shorter, more quickly written programs.
M19Spindle orientationMTSpindle orientation is more often called within cycles (automatically) or during setup (manually), but it is also available under program control via M19. The abbreviation OSS (oriented spindle stop) may be seen in reference to an oriented stop within cycles.

The relevance of spindle orientation has increased as technology has advanced. Although 4- and 5-axis contour milling and CNC single-pointing have depended on spindle position encoders for decades, before the advent of widespread live tooling and mill-turn/turn-mill systems, it was seldom relevant in "regular" (non-"special") machining for the operator (as opposed to the machine) to know the angular orientation of a spindle except for within a few restricted contexts (such as tool change, or G76 fine boring cycles with choreographed tool retraction). Most milling of features indexed around a turned workpiece was accomplished with separate operations on indexing head setups; in a sense, indexing heads were invented as separate pieces of equipment, to be used in separate operations, which could provide precise spindle orientation in a world where it otherwise mostly didn't exist (and didn't need to). But as CAD/CAM and multiaxis CNC machining with multiple rotary-cutter axes becomes the norm, even for "regular" (non-"special") applications, machinists now frequently care about stepping just about any spindle through its 360° with precision.

M21Mirror, X-axisM  
M21Tailstock forward T 
M22Mirror, Y-axisM  
M22Tailstock backward T 
M23Mirror OFFM  
M23Thread gradual pullout ON T 
M24Thread gradual pullout OFF T 
M30End of program, with return to program topMTToday M30 is considered the standard program-end code, and will return execution to the top of the program. Today most controls also still support the original program-end code, M02, usually by treating it as equivalent to M30. Additional info: Compare M02 with M30. First, M02 was created, in the days when the punched tape was expected to be short enough to be spliced into a continuous loop (which is why on old controls, M02 triggered no tape rewinding).[7] The other program-end code, M30, was added later to accommodate longer punched tapes, which were wound on a reel and thus needed rewinding before another cycle could start.[7] On many newer controls, there is no longer a difference in how the codes are executed—both act like M30.
M41Gear select – gear 1 T 
M42Gear select – gear 2 T 
M43Gear select – gear 3 T 
M44Gear select – gear 4 T 
M48Feedrate override allowedMT 
M49Feedrate override NOT allowedMTPrevent MFO. This rule is also usually called (automatically) within tapping cycles or single-point threading cycles, where feed is precisely correlated to speed. Same with spindle speed override (SSO) and feed hold button. Some controls are capable of providing SSO and MFO during threading.
M52Unload Last tool from spindleMTAlso empty spindle.
M60Automatic pallet change (APC)M For machining centers with pallet changers
M98Subprogram callMTTakes an address P to specify which subprogram to call, for example, "M98 P8979" calls subprogram O8979.
M99Subprogram endMTUsually placed at end of subprogram, where it returns execution control to the main program. The default is that control returns to the block following the M98 call in the main program. Return to a different block number can be specified by a P address. M99 can also be used in main program with block skip for endless loop of main program on bar work on lathes (until operator toggles block skip).

Example program[edit]

Tool Path for program

This is a generic program that demonstrates the use of G-Code to turn a 1" diameter X 1" long part. Assume that a bar of material is in the machine and that the bar is slightly oversized in length and diameter and that the bar protrudes by more than 1" from the face of the chuck. (Caution: This is generic, it might not work on any real machine! Pay particular attention to point 5 below.)

Sample
LineCodeDescription
%(Demarcates the start and end of a program. Originally indicated the start and end of tape feed on NC machines, generally but not always required to be present on newer machines.)
O4968(Sample face and turn program. Comments are enclosed in parentheses.)
N01M216(Turn on load monitor)
N02G20 G90 G54 D200 G40(Inch units. Absolute mode. Activate work offset. Activate tool offset. Deactivate tool nose radius compensation.)
N03G50 S2000(Set maximum spindle speed in rev/min — This setting will affect Constant Surface Speed mode)
N04T0300(Index turret to tool 3. Clear wear offset (00).)
N05G96 S854 M03(Constant surface speed [automatically varies the spindle speed], 854 sfm, start spindle CW rotation
N06G41 G00 X1.1 Z1.1 T0303 M8(Enable cutter radius compensation mode, rapid position to 1.1" above axial centerline and 1.1 inches positive from the work offset, activate flood coolant)
N07G01 Z1.0 F.05(Feed in horizontally until the tool is positioned 1" positive from the work offset)
N08X-0.016(Feed the tool slightly past center, you need to travel at least the nose radius of the tool past the center of the part or there will be a scallop of material leftover.)
N09G00 Z1.1(Rapid positioning; retract to start position)
N10X1.0(Rapid positioning; next pass)
N11G01 Z0.0 F.05(Feed in horizontally cutting the bar to 1" diameter all the way to the datum, 0.05in/rev)
N12G00 X1.1 M05 M09(Clear the part, stop the spindle, turn off the coolant)
N13G91 G28 X0(Home X axis — return the machine's home position for the X axis)
N14G91 G28 Z0(Home Z axis — return to machine's home position for the Z axis)
N15G90(Return to absolute mode. Turn off load monitor)
N16M30(Program stop, rewind to beginning of program)
%

Several points to note:

  1. There is room for some programming style, even in this short program. The grouping of codes in line N06 could have been put on multiple lines. Doing so may have made it easier to follow program execution.
  2. Many codes are "modal", meaning that they stay in effect until they are cancelled or replaced by a contradictory code. For example, once variable speed cutting (CSS) had been selected (G96), it stayed in effect until the end of the program. In operation, the spindle speed would increase as the tool neared the center of the work in order to maintain a constant surface speed. Similarly, once rapid feed was selected (G00), all tool movements would be rapid until a feed rate code (G01, G02, G03) was selected.
  3. It is common practice to use a load monitor with CNC machinery. The load monitor will stop the machine if the spindle or feed loads exceed a preset value that is set during the set-up operation. The jobs of the load monitor are various:
    1. Prevent machine damage in the event of tool breakage or a programming mistake.
      1. This is especially important because it allows safe "lights-out machining", in which the operators set up the job and start it running during the day, then go home for the night, leaving the machines running and cutting parts during the night. Because no human is around to hear, see, or smell a problem such as a broken tool, the load monitor serves an important sentry duty. When it senses overload condition, which semantically suggests a dull or broken tool, it commands a stop to the machining. Technology is available nowadays to send an alert to someone remotely (e.g., the sleeping owner, operator, or owner-operator) if desired, which can allow them to come intercede and get production going again, then leave once more. This can be the difference between profitability or loss on some jobs, because lights-out machining reduces labor hours per part.
    2. Warn of a tool that is becoming dull and needs to be replaced or sharpened. Thus an operator who is busy tending multiple machines will be told by a machine, essentially, "Hey, pause what you're doing over there, and come attend to a need over here."
  4. It is common practice to bring the tool in rapidly to a "safe" point that is close to the part—in this case 0.1" away—and then start feeding the tool. How close that "safe" distance is, depends on the preference of the programmer and/or operator and the maximum material condition for the raw stock.
  5. If the program is wrong, there is a high probability that the machine will crash, or ram the tool into the part under high power. This can be costly, especially in newer machining centers. It is possible to intersperse the program with optional stops (M01 code) which allow the program to be run piecemeal for testing purposes. The optional stops remain in the program but they are skipped during the normal running of the machine. Fortunately, most CAD/CAM software ships with CNC simulators that will display the movement of the tool as the program executes. Many modern CNC machines also allow programmers to execute the program in a simulation mode and observe the operating parameters of the machine at a particular execution point. This enables programmers to discover semantic errors (as opposed to syntax errors) before losing material or tools to an incorrect program. Depending on the size of the part, wax blocks may be used for testing purposes as well.
  6. For educational purposes, line numbers have been included in the program above. They are usually not necessary for operation of a machine, so they are seldom used in industry. However, if branching or looping statements are used in the code, then line numbers may well be included as the target of those statements (e.g. GOTO N99).
  7. Some machines do not allow multiple M codes in the same line.

Programming environments[edit]

G-code's programming environments have evolved in parallel with those of general programming—from the earliest environments (e.g., writing a program with a pencil, typing it into a tape puncher) to the latest environments that combine CAD (computer-aided design), CAM (computer-aided manufacturing), and richly featured G-code editors. (G-code editors are analogous to XML editors, using colors and indents semantically [plus other features] to aid the user in ways that basic text editors can't. CAM packages are analogous to IDEs in general programming.)

Two high-level paradigm shifts have been (1) abandoning "manual programming" (with nothing but a pencil or text editor and a human mind) for CAM software systems that generate G-code automatically via postprocessors (analogous to the development of visual techniques in general programming), and (2) abandoning hardcoded constructs for parametric ones (analogous to the difference in general programming between hardcoding a constant into an equation versus declaring it a variable and assigning new values to it at will; and to the object-oriented approach in general). Macro (parametric) CNC programming uses human-friendly variable names, relational operators, and loop structures much as general programming does, to capture information and logic with machine-readable semantics. Whereas older manual CNC programming could only describe particular instances of parts in numeric form, macro programming describes abstractions which can be flowed with ease into a wide variety of instances. The difference has many analogues, both from before the computing era and from after its advent, such as (1) creating text as bitmaps versus using character encoding with glyphs; (2) the abstraction level of tabulated engineering drawings, with many part dash numbers parametrically defined by the one same drawing and a parameter table; or (3) the way that HTML passed through a phase of using content markup for presentation purposes, then matured toward the CSS model. In all of these cases, a higher layer of abstraction was introduced in order to pursue what was missing semantically.

STEP-NC reflects the same theme, which can be viewed as yet another step along a path that started with the development of machine tools, jigs and fixtures, and numerical control, which all sought to "build the skill into the tool". Recent developments of G-code and STEP-NC aim to build the information and semantics into the tool. The idea itself is not new; from the beginning of numerical control, the concept of an end-to-end CAD/CAM environment was the goal of such early technologies as DAC-1 and APT. Those efforts were fine for huge corporations like GM and Boeing. However, for small and medium enterprises, there had to be an era in which the simpler implementations of NC, with relatively primitive "connect-the-dots" G-code and manual programming, ruled the day until CAD/CAM could improve and disseminate throughout the economy.

Any machine tool with a great number of axes, spindles, and tool stations is difficult to program well manually. It has been done over the years, but not easily. This challenge has existed for decades in CNC screw machine and rotary transfer programming, and it now also arises with today's newer machining centers called "turn-mills", "mill-turns", "multitasking machines", and "multifunction machines". Now that CAD/CAM systems are widely used, CNC programming (such as with G-code) requires CAD/CAM (as opposed to manual programming) to be practical and competitive in the market segments served by these classes of machines.[8] As Smid says, "Combine all these axes with some additional features, and the amount of knowledge required to succeed is quite overwhelming, to say the least."[9] At the same time, however, programmers still must thoroughly understand the principles of manual programming and must think critically and second-guess some aspects of the software's decisions.

Since about the mid-2000s, the era has finally arrived when "the death of manual programming" (that is, of writing lines of G-code without CAD/CAM assistance) sometimes seems to be approaching. However, it is currently only in some contexts that manual programming is obsolete. Although it is true that plenty of CAM programming can and does take place nowadays among people who are rusty on, or incapable of, manual programming, it is not true that all CNC programming can be done, or done as well or as efficiently, without being able to speak the language of G-code.[10][11] Tailoring and refining the CNC program at the machine is an area of practice where it can be easier or more efficient to edit the G-code directly rather than editing the CAM toolpaths and re-post-processing the program.

Abbreviations used by programmers and operators[edit]

This list is only a selection and, except for a few key terms, mostly avoids duplicating the many abbreviations listed at engineering drawing abbreviations and symbols (which see also).

AbbreviationExpansionCorollary info
APCautomatic pallet changerSee M60.
ATCautomatic tool changerSee M06.
CAD/CAMcomputer-aided design and computer-aided manufacturing 
CCWcounterclockwiseSee M04.
CNCcomputer numerical control 
CRCcutter radius compensationSee also G40, G41, and G42.
CScutting speedReferring to cutting speed (surface speed) in surface feet per minute (sfm, sfpm) or meters per minute (m/min).
CSSconstant surface speedSee G96 for explanation.
CWclockwiseSee M03.
DNCdirect numerical control or distributed numerical control 
EOBend of blockThe G-code synonym of end of line (EOL). A control character equating to newline. In many implementations of G-code (as also, more generally, in many programming languages), a semicolon (;) is synonymous with EOB. In some controls (especially older ones) it must be explicitly typed and displayed. Other software treats it as a nonprinting/nondisplaying character, much like word processing apps treat the pilcrow (¶).
E-stopemergency stop 
EXTexternalOn the operation panel, one of the positions of the mode switch is "external", sometimes abbreviated as "EXT", referring to any external source of data, such as tape or DNC, in contrast to the computer memory that is built into the CNC itself.
FIMfull indicator movement 
FPMfeet per minuteSee SFM.
HBMhorizontal boring millA type of machine tool that specializes in boring, typically large holes in large workpieces.
HMChorizontal machining center 
HSMhigh speed machiningRefers to machining at speeds considered high by traditional standards. Usually achieved with special geared-up spindle attachments or with the latest high-rev spindles.
HSShigh speed steelA type of tool steel used to make cutters. Still widely used today (versatile, affordable, capable) although carbide and others continue to erode its share of commercial applications
ininch(es) 
IPFinches per fluteAlso known as chip load or IPT. See F address and feed rate.
IPMinches per minuteSee F address and feed rate.
IPRinches per revolutionSee F address and feed rate.
IPTinches per toothAlso known as chip load or IPF. See F address and feed rate.
MDImanual data inputA mode of operation in which the operator can type in lines of program (blocks of code) and then execute them by pushing cycle start.
MEMmemoryOn the operation panel, one of the positions of the mode switch is "memory", sometimes abbreviated as "MEM", referring to the computer memory that is built into the CNC itself, in contrast to any external source of data, such as tape or DNC.
MFOmanual feedrate overrideThe MFO dial or buttons allow the CNC operator or machinist to multiply the programmed feed value by any percentage typically between 10% and 200%. This is to allow fine-tuning of speeds and feeds to minimize chatter, improve surface finish, lengthen tool life, and so on. The SSO and MFO features can be locked out for various reasons, such as for synchronization of speed and feed in threading, or even to prevent "soldiering"/"dogging" by operators. On some newer controls, the synchronization of speed and feed in threading is sophisticated enough that SSO and MFO can be available during threading, which helps with fune-tuning speeds and feeds to reduce chatter on the threads or in repair work involving the picking up of existing threads.[12]
mmmillimetre(s) 
MPGmanual pulse generatorReferring to the handle (handwheel) (each click of the handle generates one pulse of servo input)
NCnumerical control 
SFMsurface feet per minuteSee also speeds and feeds and G96.
SFPMsurface feet per minuteSee also speeds and feeds and G96.
SPTsingle-point threading 
SSOspindle speed overrideThe SSO dial or buttons allow the CNC operator or machinist to multiply the programmed speed value by any percentage typically between 10% and 200%. This is to allow fine-tuning of speeds and feeds to minimize chatter, improve surface finish, lengthen tool life, and so on. The SSO and MFO features can be locked out for various reasons, such as for synchronization of speed and feed in threading, or even to prevent "soldiering"/"dogging" by operators. On some newer controls, the synchronization of speed and feed in threading is sophisticated enough that SSO and MFO can be available during threading, which helps with fune-tuning speeds and feeds to reduce chatter on the threads or in repair work involving the picking up of existing threads.[12]
TC or T/Ctool change, tool changer 
TIRtotal indicator reading 
TPIthreads per inch 
USBUniversal Serial BusOne type of connection through which to transfer data
VMCvertical machining center 
VTLvertical turret latheA type of machine tool that is essentially a lathe with its Z axis turned vertical, allowing the faceplate to sit like a large turntable. The VTL concept overlaps with the vertical boring mill concept.

See also[edit]

Extended developments[edit]

Similar concepts[edit]

Concerns during application[edit]

References[edit]

  1. ^ EIA Standard RS-274-D Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines, 2001 Eye Street, NW, Washington, D.C. 20006: Electronic Industries Association, February 1979 
  2. ^ "Fanuc macro system variables". Retrieved 2014-06-30. 
  3. ^ a b c d e Smid 2008.
  4. ^ a b c Smid 2010.
  5. ^ a b c d Green 1996, pp. 1162–1226.
  6. ^ http://atyourservice.haascnc.com/faaqs/clearing-all-offsets/
  7. ^ a b c d Smid 2010, pp. 29–30.
  8. ^ MMS editorial staff (2010-12-20), "CAM system simplifies Swiss-type lathe programming", Modern Machine Shop 83 (8 [2011 Jan]): 100–105. Online ahead of print. 
  9. ^ Smid 2008, p. 457.
  10. ^ Lynch, Mike (2010-01-18), "When programmers should know G code", Modern Machine Shop (online ed.). 
  11. ^ Lynch, Mike (2011-10-19), "Five CNC myths and misconceptions [CNC Tech Talk column, Editor's Commentary]", Modern Machine Shop (online ed.). 
  12. ^ a b Korn, Derek (2014-05-06), "What is arbitrary speed threading?", Modern Machine Shop. 

Bibliography[edit]


External links[edit]