Perpetual motion

From Wikipedia, the free encyclopedia - View original article

 
  (Redirected from Free energy device)
Jump to: navigation, search
Robert Fludd's 1618 "water screw" perpetual motion machine from a 1660 wood engraving. This device is widely credited as the first recorded attempt to describe such a device in order to produce useful work, that of driving millstones.[1] Although the machine would not work, the idea was that water from the top tank turns a water wheel (bottom-left), which drives a complicated series of gears and shafts that ultimately rotate the Archimedes' screw (bottom-center to top-right) to pump water to refill the tank. The rotary motion of the water wheel also drives two grinding wheels (bottom-right) and is shown as providing sufficient excess water to lubricate them.

Perpetual motion describes "motion that continues indefinitely without any external source of energy; impossible in practice because of friction."[2] It can also be described as "the motion of a hypothetical machine which, once activated, would run forever unless subject to an external force or to wear".[3] There is a scientific consensus that perpetual motion in an isolated system would violate the first and/or second law of thermodynamics.

Machines which extract energy from seemingly perpetual sources—such as ocean currents—are capable of moving "perpetually" (for as long as that energy source itself endures), but they are not considered to be perpetual motion machines because they are consuming energy from an external source and are not isolated systems (in reality, no system can ever be a fully isolated system). Similarly, machines which comply with both laws of thermodynamics but access energy from obscure sources are sometimes referred to as perpetual motion machines, although they also do not meet the standard criteria for the name.

Despite the fact that successful isolated system perpetual motion devices are physically impossible in terms of the current understanding of the laws of physics, the pursuit of perpetual motion remains popular.

Contents

Basic principles

There is a scientific consensus that perpetual motion in an isolated system violates either the first law of thermodynamics, the second law of thermodynamics, or both. The first law of thermodynamics is essentially a statement of conservation of energy. The second law can be phrased in several different ways, the most intuitive of which is that heat flows spontaneously from hotter to colder places; the most well known statement is that entropy tends to increase (see entropy production), or at the least stay the same; another statement is that no heat engine (an engine which produces work while moving heat from a high temperature to a low temperature) can be more efficient than a Carnot heat engine.

In other words:

  1. In any isolated system, one cannot create new energy (first law of thermodynamics)
  2. The output power of heat engines is always smaller than the input heating power. The rest of the energy is removed as heat at ambient temperature. The efficiency (this is the produced power divided by the input heating power) has a maximum, given by the Carnot efficiency. It is always lower than one
  3. The efficiency of real heat engines is even lower than the Carnot efficiency due to irreversible processes.

The statements 2 and 3 only apply to heat engines. Other types of engines, which convert e.g. mechanical into electromagnetic energy, can, in principle, operate with 100% efficiency.

Machines which comply with both laws of thermodynamics by accessing energy from unconventional sources are sometimes referred to as perpetual motion machines, although they do not meet the standard criteria for the name. By way of example, clocks and other low-power machines, such as Cox's timepiece, have been designed to run on the differences in barometric pressure or temperature between night and day. These machines have a source of energy, albeit one which is not readily apparent so that they only seem to violate the laws of thermodynamics.

Machines which extract energy from seemingly perpetual sources - such as ocean currents - are indeed capable of moving "perpetually" until that energy source runs down. They are not considered to be perpetual motion machines because they are consuming energy from an external source and are not isolated systems.

Classification

One classification of perpetual motion machines refers to the particular law of thermodynamics the machines purport to violate:[4]

Use of the term "impossible" and perpetual motion

October 1920 issue of Popular Science magazine, on perpetual motion. Although scientists have established them to be impossible under the known laws of physics, perpetual motion continues to capture the imagination of inventors. The device shown is a "mass leverage" device, where the spherical weights on the right have more leverage than those on the left, supposedly creating a perpetual rotation. However, there are a greater number of weights on the left, balancing the device.

The current formulation of the laws of physics (called "The Standard Model") is known to be incomplete. Stating that physical things are absolutely impossible is often considered un-scientific.

"Epistemic impossibility" describes things which absolutely cannot occur within our current formulation of the physical laws. This interpretation of the word "impossible" is what is intended in discussions of the impossibility of perpetual motion in a closed system.[8]

The conservation laws are particularly robust from a mathematical perspective. Noether's theorem, which was proven mathematically in 1915, states that any conservation law can be derived from a corresponding continuous symmetry of the action of a physical system.[9] This means that if the laws of physics (not necessarily the current understanding of them, but the actual laws, which may still be undiscovered) and the various physical constants remain invariant over time — if the laws of the universe are fixed — then the conservation laws must hold. On the other hand, if the conservation laws are invalid, then much of modern physics would be incorrect as well.[10]

Scientific investigations as to whether the laws of physics are invariant over time use telescopes to examine the universe in the distant past to discover, to the limits of our measurements, whether ancient stars were identical to stars today. Combining different measurements such as spectroscopy, direct measurement of the speed of light in the past and similar measurements demonstrates that physics has remained substantially the same, if not identical, for all of observable history spanning billions of years.[11]

The principles of thermodynamics are so well established, both theoretically and experimentally, that proposals for perpetual motion machines are universally met with disbelief on the part of physicists. Any proposed perpetual motion design offers a potentially instructive challenge to physicists: one is almost completely certain that it can't work, so one must explain how it fails to work. The difficulty (and the value) of such an exercise depends on the subtlety of the proposal; the best ones tend to arise from physicists' own thought experiments and often shed light upon certain aspects of physics. So, for example, the thought experiment of a Brownian ratchet as a perpetual motion machine was first discussed by Gabriel Lippmann in 1900 but it was not until 1912 that Marian Smoluchowski gave an adequate explanation for why it cannot work.[12] However, during that twelve year period scientists did not believe that the machine was possible. They were merely unaware of the exact mechanism by which it would inevitably fail.

The law that entropy always increases, holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations — then so much the worse for Maxwell's equations. If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.
—Sir Arthur Stanley Eddington, The Nature of the Physical World (1927)

In the mid 19th-century Henry Dircks investigated the history of perpetual motion experiments, writing a vitriolic attack on those who continued to attempt what he believed to be impossible:

"There is something lamentable, degrading, and almost insane in pursuing the visionary schemes of past ages with dogged determination, in paths of learning which have been investigated by superior minds, and with which such adventurous persons are totally unacquainted. The history of Perpetual Motion is a history of the fool-hardiness of either half-learned, or totally ignorant persons."[13]
—Henry Dircks, Perpetuum Mobile: Or, A History of the Search for Self-motive (1861)

Techniques

One day man will connect his apparatus to the very wheelwork of the universe [...] and the very forces that motivate the planets in their orbits and cause them to rotate will rotate his own machinery.

Nikola Tesla

Some common ideas reoccur repeatedly in perpetual motion machine designs. Many ideas that continue to appear today were stated as early as 1670 by John Wilkins, Bishop of Chester and an official of the Royal Society. He outlined three potential sources of power for a perpetual motion machine, "Chymical Extractions", "Magnetical Virtues" and "the Natural Affection of Gravity".[1]

The seemingly mysterious ability of magnets to influence motion at a distance without any apparent energy source has long appealed to inventors. One of the earliest examples of a system using magnets was proposed by Wilkins and has been widely copied since: it consists of a ramp with a magnet at the top, which pulled a metal ball up the ramp. Near the magnet was a small hole that was supposed to allow the ball to drop under the ramp and return to the bottom, where a flap allowed it to return to the top again. The device simply could not work: any magnet strong enough to pull the ball up the ramp would necessarily be too powerful to allow it to drop through the hole. Faced with this problem, more modern versions typically use a series of ramps and magnets, positioned so the ball is to be handed off from one magnet to another as it moves. The problem remains the same.

Perpetuum Mobile of Villard de Honnecourt (about 1230).

Gravity also acts at a distance, without an apparent energy source. But to get energy out of a gravitational field (for instance, by dropping a heavy object, producing kinetic energy as it falls) one has to put energy in (for instance, by lifting the object up), and some energy is always dissipated in the process. A typical application of gravity in a perpetual motion machine is Bhaskara's wheel in the 12th century, whose key idea is itself a recurring theme, often called the overbalanced wheel: Moving weights are attached to a wheel in such a way that they fall to a position further from the wheel's center for one half of the wheel's rotation, and closer to the center for the other half. Since weights further from the center apply a greater torque, the result is (or would be, if such a device worked) that the wheel rotates forever. The moving weights may be hammers on pivoted arms, or rolling balls, or mercury in tubes; the principle is the same.

Yet another theoretical machine involves a frictionless environment for motion. This involves the use of diamagnetic or electromagnet levitation to float an object. This is done in a vacuum to eliminate air friction and friction from an axle. The levitated object is then free to rotate around its center of gravity without interference. However, this machine has no practical purpose because the rotated object cannot do any work as work requires the levitated object to cause motion in other objects, bringing friction into the problem. Furthermore, a perfect vacuum is an unattainable goal since both the container and the object itself would slowly vaporize, thereby degrading the vacuum.

To extract work from heat, thus producing a perpetual motion machine of the second kind, the most common approach (dating back at least to Maxwell's demon) is unidirectionality. Only molecules moving fast enough and in the right direction are allowed through the demon's trap door. In a Brownian ratchet, forces tending to turn the ratchet one way are able to do so while forces in the other direction aren't. A diode in a heat bath allows through currents in one direction and not the other. These schemes typically fail in two ways: either maintaining the unidirectionality costs energy (Maxwell's demon needs light to look at all those particles and see what they're doing)[dubious ], or the unidirectionality is an illusion and occasional big violations make up for the frequent small non-violations (the Brownian ratchet will be subject to internal Brownian forces and therefore will sometimes turn the wrong way).

Buoyancy is another frequently-misunderstood phenomenon. Some proposed perpetual-motion machines miss the fact that to push a volume of air down in a fluid takes the same work as to raise a corresponding volume of fluid up against gravity. These types of machines may involve two chambers with pistons, and a mechanism to squeeze the air out of the top chamber into the bottom one, which then becomes buoyant and floats to the top. The squeezing mechanism in these designs would not be able to do enough work to move the air down, or would leave no excess work available to be extracted.

Invention history

Orffyreus Wheel. The device was designed by Johann Bessler.

The 8th century Bavarian "magic wheel" was a disc mounted on an axle powered by lodestones, claimed to be able to rotate forever.[14]

Indian mathematician-astronomer, Bhāskara II, described a wheel, dating to 1150, that would run forever.[15]

Villard de Honnecourt in 1235 described, in a 33 page manuscript, a perpetual motion machine of the first kind. His idea was based on the changing torque of a series of weights attached with hinges to the rim of a wheel. While ascending they would hang close to the wheel and have little torque, but they would topple after reaching the top and drag the wheel down on descent due to their greater torque during the swing. His device spawned a variety of imitators who continued to refine the basic design.

Following the example of Villard, Peter of Maricourt designed a magnetic globe which when mounted without friction parallel to the celestial axis would rotate once a day and serve as an automatic armillary sphere.[15]

In 1607 Cornelius Drebbel in "Wonder-vondt van de eeuwighe bewegingh" dedicated a Perpetuum motion machine to James I of England.[16] It was described by Heinrich Hiesserle von Chodaw in 1621.[17] Also in the 17th century, Robert Boyle's proposed self-flowing flask purports to fill itself through siphon action and Blaise Pascal introduced a primitive form of roulette and the roulette wheel in his search for a perpetual motion machine.[18]

In the 18th century, Johann Bessler (also known as Orffyreus) created a series of claimed perpetual motion machines. In 1775 the Royal Academy of Sciences in Paris issued the statement that the Academy "will no longer accept or deal with proposals concerning perpetual motion".

In the 19th century, the invention of perpetual motion machines became an obsession for many scientists. Many machines were designed based on electricity. John Gamgee developed the Zeromotor, a perpetual motion machine of the second kind. Devising these machines is a favourite pastime of many eccentrics, who often devised elaborate machines in the style of Rube Goldberg or Heath Robinson. Such designs appeared to work on paper, though various flaws or obfuscated external energy sources are eventually understood to have been incorporated into the machine (unintentionally or intentionally).

Patents

Proposals for such inoperable machines have become so common that the United States Patent and Trademark Office (USPTO) has made an official policy of refusing to grant patents for perpetual motion machines without a working model. The USPTO Manual of Patent Examining Practice states:

With the exception of cases involving perpetual motion, a model is not ordinarily required by the Office to demonstrate the operability of a device. If operability of a device is questioned, the applicant must establish it to the satisfaction of the examiner, but he or she may choose his or her own way of so doing.[19]

And, further, that:

A rejection [of a patent application] on the ground of lack of utility includes the more specific grounds of inoperativeness, involving perpetual motion. A rejection under 35 U.S.C. 101 for lack of utility should not be based on grounds that the invention is frivolous, fraudulent or against public policy.[20]

The filing of a patent application is a clerical task, and the USPTO won't refuse filings for perpetual motion machines; the application will be filed and then most probably rejected by the patent examiner, after he has done a formal examination.[21] Even if a patent is granted, it doesn't mean that the invention actually works; it just means that the examiner thinks that it works, or that he couldn't figure out why it wouldn't work.[21]

The USPTO maintains a collection of Perpetual Motion Gimmicks as Digest 9 in Class 74

The USPTO has granted a few patents for motors that are claimed to run without net energy input. Some of these are:

Howard R. Johnson, U.S. Patent 4,151,431
USPatent4151431-1.pngUSPatent4151431-2.png

In 1979, Joseph Newman filed a US Patent application for his "energy machine" which unambiguously claimed over-unity operation, where power output exceeded power input; the source of energy was claimed to be the atoms of the machine's copper conductor.[22] The Patent Office rejected the application after the National Bureau of Standards measured the electrical input to be greater than the electrical output. Newman challenged the decision in court and lost.[23]

Other patent offices around the world, such as the United Kingdom Patent Office, have similar practices. Section 4.05 of the UKPO Manual of Patent Practice states:

Processes or articles alleged to operate in a manner which is clearly contrary to well-established physical laws, such as perpetual motion machines, are regarded as not having industrial application.[24]

Examples of decisions by the UK Patent Office to refuse patent applications for perpetual motion machines include:[25]

Decision BL O/044/06, John Frederick Willmott's application no. 0502841[26]
Decision BL O/150/06, Ezra Shimshi's application no. 0417271[27]

The European Patent Classification (ECLA) has classes including patent applications on perpetual motion systems: ECLA classes "F03B17/04: Alleged perpetua mobilia ..." and "F03B17/00B: [... machines or engines] (with closed loop circulation or similar : ... Installations wherein the liquid circulates in a closed loop; Alleged perpetua mobilia of this or similar kind ...".[28]

Recent examples

In the late 19th century the term "perpetual motion" increasingly became associated with fraud and since then inventors have referred to perpetual motion devices using various alternatives such as "over-unity", "free energy", "zero point energy".[citation needed] Here are some representative examples of contemporary proposed perpetual motion designs:

Apparent perpetual motion machines

Even though they fully respect the laws of thermodynamics, there are a few conceptual or real devices that appear to be in "perpetual motion." Closer analysis reveals that they actually "consume" some sort of natural resource or latent energy, such as the phase changes of water or other fluids or small natural temperature gradients. In general, extracting large amounts of work using these devices is difficult to impossible.

Resource consuming

Some examples of such devices include:

Low friction

Thought experiments

In some cases a thought (or "gedanken") experiment appears to suggest that perpetual motion may be possible through accepted and understood physical processes. However, in all cases, a flaw has been found when all of the relevant physics is considered. Examples include:

Free energy suppression

Because perpetual motion claims have been around for some time, conspiracy theories are often invoked to explain the lack of acceptance and/or availability of such technology.

Gallery

This is a gallery of some of the perpetual motion machine plans.

See also

Notes

  1. ^ a b Angrist, Stanley (January 1968). "Perpetual Motion Machines". Scientific American 218 (1): 115–122. 
  2. ^ http://www.websters-online-dictionary.org/definitions/perpetual+motion
  3. ^ http://oxforddictionaries.com/definition/perpetual%2Bmotion?q=perpetual+motion
  4. ^ Rao, Y. V. C. (2004). An Introduction to Thermodynamics. Hyderabad, India: Universities Press (India) Private Ltd.. ISBN 81-7371-461-4. http://books.google.com/books?id=iYWiCXziWsEC. Retrieved August 2010. 
  5. ^ An alternative definition is given, for example, by Schadewald, who defines a "perpetual motion machine of the third kind" as a machine that violates the third law of thermodynamics. See Schadewald, Robert J. (2008), Worlds of Their Own - A Brief History of Misguided Ideas: Creationism, Flat-Earthism, Energy Scams, and the Velikovsky Affair, Xlibris, ISBN 978-1-4636-0435-1. pp55–56
  6. ^ Wong, Kau-Fui Vincent (2000). Thermodynamics for Engineers. CRC Press. p. 154. ISBN 978-0-84-930232-9. http://books.google.com/?id=rEOMi-85v64C 
  7. ^ Akshoy, Ranjan Paul; Sanchayan, Mukherjee; Pijush, Roy (2005). Mechanical Sciences: Engineering Thermodynamics and Fluid Mechanics. Prentice-Hall India. p. 51. ISBN 978-8-12-032727-6. http://books.google.com/?id=m07QzMlX47wC 
  8. ^ Barrow, John D. (1998). Impossibility: The Limits of Science and the Science of Limits. Oxford University Press. ISBN 978-0-19-851890-7. 
  9. ^ Goldstein, Herbert; Poole, Charles; Safko, John (2002). Classical Mechanics (3rd edition). San Francisco: Addison Wesley. pp. 589–598. ISBN 0-201-65702-3 
  10. ^ "The perpetual myth of free energy". BBC News. 9 July 2007. http://news.bbc.co.uk/1/hi/technology/6283374.stm. Retrieved 16 August 2010. "In short, law states that energy cannot be created or destroyed. Denying its validity would undermine not just little bits of science - the whole edifice would be no more. All of the technology on which we built the modern world would lie in ruins." 
  11. ^ "CE410: Are constants constant?", talkorigins
  12. ^ Harmor, Greg; Derek Abbott (2005). "The Feynman-Smoluchowski ratchet". Parrondo's Paradox Research Group. School of Electrical & Electronic Engineering, Univ. of Adelaide. http://www.eleceng.adelaide.edu.au/Groups/parrondo/ratchet.html. Retrieved 2010-01-15. 
  13. ^ Dircks, Henry (1861). Perpetuum Mobile: Or, A History of the Search for Self-motive. p. 354. http://books.google.co.uk/books?id=lEWF9o2Ba4kC&pg=PA1. Retrieved 17 August 2012. 
  14. ^ Mark E. Eberhart:Feeding the fire: the lost history and uncertain future of mankind's energy,p.14
  15. ^ a b Lynn Townsend, White Jr (1960). "Tibet, India, and Malaya as Sources of Western Medieval Technology". The American Historical Review 65 (3): 522–526. 
  16. ^ "Wonder-vondt van de eeuwighe bewegingh"
  17. ^ [1]
  18. ^ MIT, "Inventor of the Week Archive: Pascal : Mechanical Calculator", May 2003. "Pascal worked on many versions of the devices, leading to his attempt to create a perpetual motion machine. He has been credited with introducing the roulette machine, which was a by-product of these experiments."
  19. ^ "600 Parts, Form, and Content of Application - 608.03 Models, Exhibits, Specimens". Manual of Patent Examining Procedure (8 ed.). August 2001. http://www.uspto.gov/web/offices/pac/mpep/documents/0600_608_03.htm 
  20. ^ "700 Examination of Applications II. UTILITY - 706.03(a) Rejections Under 35 U.S.C. 101". Manual of Patent Examining Procedure (8 ed.). August 2001. http://www.uspto.gov/web/offices/pac/mpep/documents/0700_706_03_a.htm 
  21. ^ a b c Pressman, David (2008). Nolo. ed. Patent It Yourself (13, illustrated, revised ed.). Nolo. p. 99. ISBN 1-4133-0854-6. http://books.google.com/?id=5KGN1yPzPa8C&pg=PA99&dq=U.S.+Patent+4,151,431. 
  22. ^ Peterson, Ivars (1 June 1985). "A patent pursuit: Joe Newman’s ‘energy machine’ - inventor fights for patent on machine that generates more energy than it takes in from external sources". Science News. http://findarticles.com/p/articles/mi_m1200/is_v127/ai_3794102. 
  23. ^ Peterson, Ivars (5 July 1986). "NBS Report Short Circuits Energy Machine". Science News. http://findarticles.com/p/articles/mi_m1200/is_v130/ai_4305182. Retrieved 8 May 2009. 
  24. ^ Manual of Patent Practice, Section 4. United Kingdom Patent Office. http://www.patent.gov.uk/practice-sec-004.pdf 
  25. ^ See also, for more examples of refused patent applications at the United Kingdom Patent Office (UK-IPO), UK-IPO gets tougher on perpetual motion, IPKat, 12 June 2008. Consulted on June 12, 2008.
  26. ^ Patents Ex parte decision (O/044/06)
  27. ^ http://www.patent.gov.uk/patent/p-decisionmaking/p-challenge/p-challenge-decision-results/o15006.pdf
  28. ^ ECLA classes F03B17/04 and F03B17/00B. Consulted on June 12, 2008.
  29. ^ WO application 2008037004, Kwok, James, "An energy storage device and method of use", published 2008-04-03 
  30. ^ Munk, W.; Wunsch, C (1998). "Abyssal recipes II: energetics of tidal and wind mixing". Deep Sea Research Part I Oceanographic Research Papers 45 (12): 1977. Bibcode 1998DSRI...45.1977M. doi:10.1016/S0967-0637(98)00070-3. 
  31. ^ Ray, R. D.; Eanes, R. J.; Chao, B. F. (1996). "Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry". Nature 381 (6583): 595. Bibcode 1996Natur.381..595R. doi:10.1038/381595a0. 

External links