Forced perspective

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
This article is about the photography technique. For the Fringe episode, see Forced Perspective (Fringe).
Unintentional forced perspective effect in this U.S. Navy photograph. The CH-47 Chinook helicopter at left is more than eighteen feet tall and almost one hundred feet long.
The Potemkin Stairs in Odessa extend for 142 meters, but give the illusion of greater depth since the stairs are wider at the bottom than at the top.

Forced perspective is a technique that employs optical illusion to make an object appear farther away, closer, larger or smaller than it actually is. It is used primarily in photography, filmmaking and architecture. It manipulates human visual perception through the use of scaled objects and the correlation between them and the vantage point of the spectator or camera.

In filmmaking[edit]

One example of forced perspective is a scene in an action/adventure movie in which dinosaurs are threatening the heroes. By placing a miniature model of a dinosaur close to the camera, the dinosaur may be made to look monstrously tall to the viewer, even though it is just closer to the camera.

Movies, especially B-movies in the 1950s and 1960s, were produced on limited budgets and often featured forced perspective shots.

Forced perspective can be made more believable when environmental conditions obscure the difference in perspective. For example, the final scene of the famous movie Casablanca takes place at an airport in the middle of a storm, although the entire scene was shot in a studio. This was accomplished by using a painted backdrop of an aircraft, which was "serviced" by dwarfs standing next to the backdrop. A downpour (created in-studio) draws much of the viewer's attention away from the backdrop and extras, making the simulated perspective less noticeable.

Role of light[edit]

Early instances of forced perspective used in low-budget motion pictures showed objects that were clearly different from their surroundings: often blurred or at a different light level. The principal cause of this was geometric. Light from a point source travels in a spherical wave, decreasing in intensity (or illuminance) as the inverse square of the distance travelled. This means that a light source must be four times as bright to produce the same illuminance at an object twice as far away. Thus to create the illusion of a distant object being at the same distance as a near object and scaled accordingly, much more light is required. When shooting with forced perspective, it's important to have the aperture stopped down sufficiently to achieve proper DOF (depth of field), so that the foreground object and background are both sharp.

Since miniature models would need to be subjected to far greater lighting than the main focus of the camera, the area of action, it is important to ensure that these can withstand the significant amount of heat generated by the incandescent light sources typically used in film and TV production.

Nodal point: forced perspective in motion[edit]

Peter Jackson's film adaptations of The Lord of the Rings make extended use of forced perspective. Characters apparently standing next to each other would be displaced by several feet in depth from the camera. This, in a still shot, makes some characters appear much smaller (for the dwarves and Hobbits) in relation to others.

An extensively used technique in The Lord of the Rings: The Fellowship of the Ring was an enhancement of this principle which could be used in moving shots. Portions of sets were mounted on movable platforms which would move precisely according to the movement of the camera, so that the optical illusion would be preserved at all times for the duration of the shot. The same techniques were used in the Harry Potter movies to make the character Hagrid look like a giant. Props around Harry and his friends are of normal size, while seemingly identical props placed around Hagrid are in fact smaller.

The techniques developed center around a nodal point axis, so the camera's panning axis is at the point between the lens and aperture ring where the light travelling through the camera meets its axis. By comparison, the normal panning axis would be at the point at which light would strike the film (or image sensor in a digital camera).

The position of this nodal point can be different for every lens. However, on wide angle lenses it is often found between the midpoint of the lens and the aperture ring.

Comic effects[edit]

Use of forced perspective with the Leaning Tower of Pisa is popular in tourist photography.
Forced perspective of giant beer can model shown "perched" on top of a person's hand.

As with many film genres and effects, forced perspective can be used to visual-comedy effect. Typically, when an object or character is portrayed in a scene, its size is defined by its surroundings. A character then interacts with the object or character, in the process showing that the viewer has been fooled and there is forced perspective in use.

The 1930 Laurel and Hardy movie Brats used forced perspective to depict Stan and Ollie simultaneously as adults and as their own sons.

An example used for comic effect can be found in the slapstick comedy Top Secret! in a scene which appears to begin as a close-up of a ringing phone with the characters in the distance. However, when the character walks up to the phone (towards the camera) and picks it up, it becomes apparent that the phone is extremely oversized instead of being close to the camera. Another scene in the same movie begins with a close-up of a wristwatch. The next cut shows that the character actually has a gargantuan wristwatch.

The same technique is also used in the Dennis Waterman sketch in the British BBC sketch show Little Britain. In the television version, oversized props are used to make the caricatured Waterman look just three feet tall or less.

In The History of the World, Part I, while escaping the French peasants, Mel Brooks' character, Jacques, who is doubling for King Louis, runs down a hall of the palace, which turns into a ramp, showing the smaller forced perspective door at the end. As he backs down into the normal part of the room, he mutters, "Who designed this place?"

One of the recurring The Kids in the Hall sketches featured Mr. Tyzik, "The Headcrusher", who used forced perspective (from his own point of view) to "crush" other people's heads between his fingers. This is also done by the character Sheldon Cooper in the TV show The Big Bang Theory to his friends when they displease him.

In the making of Season 5 of Red vs. Blue, the creators used forced perspective to make the character of Tucker's baby look small. In the game, the alien character used as the baby is the same height as other characters.

Forced perspective in the Roman Emperor's Aula Palatina: The windows and the coffer in the apse are smaller, and the apsis has a raised floor.
On the outside, the true size of the apsis windows is apparent.

In architecture[edit]

In architecture, a structure can be made to seem larger, taller, farther away or otherwise by adjusting the scale of objects in relation to the spectator, increasing or decreasing perceived depth.

For example, when forced perspective is used to make an object appear farther away, the following method can be used: By constantly decreasing the scale of objects from expectancy and convention toward the farthest point from the spectator, an illusion is created that the scale of said objects is decreasing due to their distant location. In contrast, the opposite technique was sometimes used in classical garden designs and other "follies" to shorten the perceived distances of points of interest along a path.

The Statue of Liberty is built with a slight forced perspective so that it appears more correctly proportioned when viewed from its base. When the statue was designed in the late 19th century (before easy air flight), there were few other angles from which to view the statue. This caused a difficulty for special effects technicians working on the movie Ghostbusters II, who had to back off on the amount of forced perspective used when replicating the statue for the movie so that their model (which was photographed head-on) would not look top-heavy.[1] This effect can also be seen in Michelangelo's statue of David.

Forced perspective is extensively employed at theme parks and other such architecture as found in Disneyland and Las Vegas, often to make structures seem larger than they are in reality where physically larger structures would not be feasible or desirable or to provide an optical illusion for entertainment value.

Through depth perception[edit]

The technique takes advantage of the visual cues humans use to perceive depth such as angular size, aerial perspective, shading, and relative size. In film, photography and art, perceived object distance is manipulated by altering fundamental monocular cues used to discern the depth of an object in the scene such as aerial perspective, blurring, relative size and lighting. Using these monocular cues in concert with angular size, the eyes can perceive the distance of an object. Artists are able to freely move the visual plane of objects by obscuring these cues to their advantage.

Increasing the object's distance from the audience makes an object appear smaller, its apparent size decreases as distance from the audience increases. This phenomenon is that of the manipulation of angular and apparent size.

A person perceives the size of an object based on the size of the object's image on the retina. This depends solely on the angle created by the rays coming from the topmost and bottommost part of the object that pass through the center of the lens of the eye. the larger the angle an object subtends, the larger the apparent size of the object. The subtended angle increases as the object moves closer to the lens. Two objects with different actual size have the same apparent size when they subtend the same angle. Similarly, two objects of the same actual size can have drastically varying apparent size when they are moved to different distances from the lens.[2]

Calculating angular size[edit]

Angular Size depiction.
Angular Size, distance and object size.

The formula for calculating angular size is as follows:

\theta=2\tan^{-1}\left(\frac{h}{2D}\right)

in which θ is the subtended angle, h is the actual size of the object and D is the distance from the lens to the object.[3]

Techniques employed[edit]

Examples[edit]

In film[edit]

Most recently, forced perspective has been employed to create dwarfs and giants in film series such as Harry Potter and The Lord of the Rings—for example, the Hobbit Frodo in the Lord of the Rings and Hagrid the half-giant in Harry Potter.

In reality, there is only a 5-inch height difference between the two actors, Frodo being 5′6″ and Gandalf being 5′11″, but the altered angular size of the actors allows for a much more drastic difference.

In art[edit]

Still life with a curtain

In his painting entitled Still life with a curtain, Paul Cézanne creates the illusion of depth by using brighter colors on objects closer to the viewer and dimmer colors and shading to distance the "light source" from objects that he wanted to appear farther away. His shading technique allows the audience to discern the distance between objects due to their relative distances from a stationary light source that illuminates the scene. Furthermore he uses a blue tint on objects that should be farther away and redder tint to objects in the foreground.

See also[edit]

References[edit]

  1. ^ Adam Eisenberg (November 1989). "Ghostbusters II: Ghostbusters Revisited". Cinefex. 
  2. ^ Knight, Randall Dewey., Brian Jones, and Stuart Field. College Physics: a Strategic Approach. 1st ed. San Francisco: Pearson Education, 2006. Print. p. 704-705.
  3. ^ Michael A. Seeds; Dana E. Backman (2010). Stars and Galaxies (7 ed.). Brooks Cole. p. 39.
  4. ^ O'Shea, R.P., Blackburn, S.G., & Ono, H. (1994). Contrast as a depth cue. Vision Research, 34, 1595–1604.
  5. ^ George Mather (1996) "Image Blur as a Pictorial Depth Cue". Proceedings: Biological Sciences, Vol. 263, No. 1367 (Feb. 22, 1996), pp. 169–172.
  6. ^ "Gestalt Psychology". Retrieved 5 March 2013. 
  7. ^ Lipton, L. (1982) Foundations of the Stereoscopic Cinema - A Study in Depth. New York, Van Nostrand Reinhold, pg 56.
  8. ^ a b Purves D, Lotto B (2003) Why We See What We Do: An Empirical Theory of Vision. Sunderland, MA: Sinauer Associates.