Cruciferous vegetables

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search
This article is about the use of Brassicaceae as food. For a botanical description of plants in this family (whether or not used for food), see Brassicaceae.
Cabbage plants

Cruciferous vegetables are vegetables of the family Brassicaceae (also called Cruciferae). These vegetables are widely cultivated, with many genera, species, and cultivars being raised for food production such as cauliflower, cabbage, cress, bok choy, broccoli and similar green leaf vegetables. The family takes its alternate name (Cruciferae, New Latin for "cross-bearing") from the shape of their flowers, whose four petals resemble a cross.

Ten of the most common cruciferous vegetables eaten by people, known colloquially as cole crops,[1] are in a single species (B. oleracea); they are not distinguished from one another taxonomically, only by horticultural category of cultivar groups. Numerous other genera and species in the family are also edible. Cruciferous vegetables are one of the dominant food crops worldwide. They are high in vitamin C and soluble fiber and contain multiple nutrients and phytochemicals.

List of cruciferous vegetables[edit]

Extensive selective breeding has produced a large variety of cultivars, especially within the genus Brassica. One description of genetic factors involved in the breeding of Brassica species is the Triangle of U.

The taxonomy of common cruciferous vegetables
common namegenusspecific epithetCultivar Group
land cressBarbareaverna
ethiopian mustardBrassicacarinata
kaleBrassicaoleraceaAcephala Group
collard greensBrassicaoleraceaAcephala Group
Chinese broccoli (gai-lan)BrassicaoleraceaAlboglabra Group
cabbageBrassicaoleraceaCapitata Group
Brussels sproutsBrassicaoleraceaGemmifera Group
kohlrabiBrassicaoleraceaGongylodes Group
broccoliBrassicaoleraceaItalica Group
broccoflowerBrassicaoleraceaItalica Group × Botrytis Group
broccoli romanescoBrassicaoleraceaBotrytis Group / Italica Group
cauliflowerBrassicaoleraceaBotrytis Group
wild broccoliBrassicaoleraceaOleracea Group
bok choyBrassicarapachinensis
komatsunaBrassicarapapervidis or komatsuna
Rapini (broccoli rabe)Brassicarapaparachinensis
flowering cabbageBrassicarapaparachinensis
chinese cabbage, napa cabbageBrassicarapapekinensis
turnip root; greensBrassicaraparapifera
siberian kaleBrassicanapuspabularia
wrapped heart mustard cabbageBrassicajuncearugosa
mustard seeds, brown; greensBrassicajuncea
mustard seeds, whiteBrassica (or Sinapis)hirta
mustard seeds, blackBrassicanigra
wild arugulaDiplotaxistenuifolia
arugula (rocket)Erucavesicaria
field pepperweedLepidiumcampestre
garden cressLepidiumsativum

Clinical significance[edit]

Drug and toxin metabolism[edit]

Chemicals contained in cruciferous vegetables induce the expression of the liver enzyme CYP1A2.[2] Furthermore some drugs such as haloperidol and theophylline are metabolized by CYP1A2. Consequently consumption of cruciferous vegetable may decrease bioavailability and half-life of these drugs.[3]

Brassicaceae contain a number of hepato-protective agents.[4] Alliaceous and cruciferous vegetable consumption induces glutathione S-transferases, uridine diphosphate-glucuronosyl transferases, and quinone reductases[5] all of which participate in detoxification of carcinogens such as aflatoxin.[6]

Antimicrobial activity[edit]

Iso-thio-cyanates are an important factor in the action of wasabi against Helicobacter pylori,.[7][8][9] ITC is not a molecule, but a functional group of many different molecules, Sinigrin being a notable precursor of allyl-ITC. A-ITC is a larger part of Wasabi than of most other Brassicaceae. Sulforaphane demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosae in mice and human subjects.[10]


People who can taste phenylthiocarbamide, which is either very bitter or tasteless, are less likely to eat cruciferous vegetables,[11] due to the resemblance between isothiocyanate (ITC) and PTC.



Cruciferous vegetables can potentially be goitrogenic (inducing goiter formation). They contain enzymes that interfere with the formation of thyroid hormone in people with iodine deficiency.[12][13] Cooking for 30 minutes significantly reduces the amount of goitrogens and nitriles. At high intake of crucifers, the goitrogens inhibit the incorporation of iodine into thyroid hormone and also the transfer of iodine into milk by the mammary gland.[14]


  1. ^
  2. ^ Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C, Feng Z, Potter JD (June 2000). "Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets". Carcinogenesis 21 (6): 1157–62. doi:10.1093/carcin/21.6.1157. PMID 10837004. 
  3. ^ Bibi Z (2008). "Role of cytochrome P450 in drug interactions". Nutr Metab (Lond) 5: 27. doi:10.1186/1743-7075-5-27. PMC 2584094. PMID 18928560. 
  4. ^ Aggarwal BB, Ichikawa H (September 2005). "Molecular targets and anticancer potential of indole-3-carbinol and its derivatives". Cell Cycle 4 (9): 1201–15. doi:10.4161/cc.4.9.1993. PMID 16082211. 
  5. ^ Kensler TW, Curphey TJ, Maxiutenko Y, Roebuck BD (2000). "Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins". Drug Metabol Drug Interact 17 (1-4): 3–22. doi:10.1515/DMDI.2000.17.1-4.3. PMID 11201301. 
  6. ^ Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, Ye L, Coady JL, Wang JB, Wu Y, Sun Y, Zhang QN, Zhang BC, Zhu YR, Qian GS, Carmella SG, Hecht SS, Benning L, Gange SJ, Groopman JD, Talalay P (November 2005). "Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China". Cancer Epidemiol. Biomarkers Prev. 14 (11 Pt 1): 2605–13. doi:10.1158/1055-9965.EPI-05-0368. PMID 16284385. 
  7. ^ Shin IS, Masuda H, Naohide K (August 2004). "Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori". Int. J. Food Microbiol. 94 (3): 255–61. doi:10.1016/S0168-1605(03)00297-6. PMID 15246236. 
  8. ^ Haristoy X, Fahey JW, Scholtus I, Lozniewski A (April 2005). "Evaluation of the antimicrobial effects of several isothiocyanates on Helicobacter pylori". Planta Med. 71 (4): 326–30. doi:10.1055/s-2005-864098. PMID 15856408. 
  9. ^ Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (May 2002). "Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors". Proc. Natl. Acad. Sci. U.S.A. 99 (11): 7610–5. doi:10.1073/pnas.112203099. PMC 124299. PMID 12032331. 
  10. ^ Yanaka A (2011). "Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosae in mice and human subjects". Curr. Pharm. Des. 17 (16): 1532–40. doi:10.2174/138161211796196945. PMID 21548875. 
  11. ^ Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (April 2004). "Natural selection and molecular evolution in PTC, a bitter-taste receptor gene". Am. J. Hum. Genet. 74 (4): 637–46. doi:10.1086/383092. PMC 1181941. PMID 14997422. Lay summaryScience Blog. 
  12. ^ Shomon M (August 27, 2009). "What are Goitrogens and How Do they Affect the Thyroid?". Thyroid Disease. 
  13. ^ McDougall J (December 2005). "Thyroid Deficiency Strikes One in Six". McDougall Newsletter 4 (12). 
  14. ^ Masterjohn C (15 February 2008). "Bearers of the Cross: Crucifers in the Context of Traditional Diets and Modern Science". The Weston A. Price Foundation for Wise Traditions in Food, Farming, and the Healing Arts. 

Further reading[edit]

External links[edit]