Cosworth

From Wikipedia, the free encyclopedia - View original article

Cosworth
TypePrivate company
IndustryAutomotive, automobile racing (motorsport)
FoundedLondon, 1958
FoundersMike Costin and
Keith Duckworth
HeadquartersNorthampton, England
Area servedWorldwide
Key peopleHal Reisiger (CEO)[1]
ProductsEngines, Electronic Data Acquisition and Control Systems
ServicesHigh Performance engineering, Precision manufacturing
OwnersGerald Forsythe,
Kevin Kalkhoven
WebsiteCosworth.com
 
Jump to: navigation, search
Cosworth
TypePrivate company
IndustryAutomotive, automobile racing (motorsport)
FoundedLondon, 1958
FoundersMike Costin and
Keith Duckworth
HeadquartersNorthampton, England
Area servedWorldwide
Key peopleHal Reisiger (CEO)[1]
ProductsEngines, Electronic Data Acquisition and Control Systems
ServicesHigh Performance engineering, Precision manufacturing
OwnersGerald Forsythe,
Kevin Kalkhoven
WebsiteCosworth.com
A Ford-Cosworth DFV on a Ligier JS11

Cosworth is a high-performance engineering company founded in London in 1958, specialising in engines and electronics for automobile racing (motorsport) and mainstream automotive industries. Cosworth is based in Northampton, England, with North American facilities in Torrance, Indianapolis and Mooresville, North Carolina.

Cosworth has collected 176 wins in Formula One as engine supplier, ranking second with most wins behind Ferrari.[2]

Corporate history[edit]

The company was founded as a British racing internal combustion engine maker in 1958 by Mike Costin and Keith Duckworth (COStin and duckWORTH).

Both of the co-founders being former employees of Lotus Engineering Ltd., Cosworth initially maintained a strong relationship with Colin Chapman and the initial revenues of the company came almost exclusively from Lotus. When the company was founded in 1958, Duckworth left Lotus, leaving Costin (who had signed a term-employment contract with Chapman) at the company. Until 1962, Costin worked on Cosworth projects in his private time, while being active as a key Lotus engineer on the development of Lotus 15 through 26 (Elan), as well as leading the Team Lotus contingent at foreign races as evidenced by the 1962 Le Mans Lotus scandal.

Cosworth Mk.IV on 1962 Lotus 20
Cosworth Mk.XIII on Lotus 59

Initial series production engines (Mk.II, Mk.V, Mk.VIII and Mk.XIV) were sold to Lotus exclusively, and many of the other racing engines up to Mk.XII were delivered to Team Lotus. The success of Formula Junior engines (Mk.III, IV, XI and XVII) started bringing in non-Lotus revenues, and the establishment of Formula B by SCCA in America allowed the financial foundation of Cosworth to be secured by the increased sales of Mk.XIII, a pure racing engine based on Lotus TwinCam, through its domination of the class. This newly found security enabled the company to distance itself from the Lotus Mk.VII and Elan optional road engine assembly business, and allowed its resources to be concentrated on racing engine development.

The first Cosworth-designed cylinder head was for SCA series with a SOHC reverse-flow configuration similar to the Coventry Climax FWE engine. A real success was achieved with the next gear-driven DOHC four valve FVA in 1966, which, with a help from Chapman, convinced Ford to purchase the rights to the design and sign a development contract including an eight cylinder version. This resulted in the DFV, which dominated Formula One for many years.

From this time on, Cosworth was supported by Ford for many years, and many of the Cosworth designs were owned by Ford and named as Ford engines under similar contracts. Another success by the BD series in the 1970s put Cosworth on a growing track.

The company went through a number of ownership changes. After Duckworth decided he didn't want to be involved with the day-to-day business of running a growing company, he sold out the ownership to United Engineering Industries (UEI) in 1980, retaining his life presidency and day-to-day technical involvement with Cosworth, and becoming a UEI board director; UEI was a group of small to medium-sized technology companies which was taken over by Carlton Communications in 1988 - Carlton was primarily interested in some of the audio-visual companies in the UEI portfolio and Cosworth was a poor fit with these; a new buyer for the company in the engineering/automotive sector was sought and the traditional engineering company Vickers plc bought Cosworth in 1990.[3] In 1998, Vickers sold Cosworth and Pi Research to Ford.[2] In September, 2004 Ford announced that it was selling Cosworth and Pi Research, along with Cosworth Racing Ltd and its Jaguar Formula One team. On 15 November 2004, the sale of Cosworth was completed, to Champ Car World Series owners Gerald Forsythe and Kevin Kalkhoven, the current Cosworth Group.[2]

The road car engine aspect of the business was split from the racing division following the sale of the engineering division of Cosworth to VW/Audi in September 1998 and renamed Cosworth Technology, before being acquired by Mahle GmbH in 2005. Cosworth Technology was then renamed as MAHLE Powertrain on 1 July 2005.[4]

Since 2006, Cosworth has diversified to provide engineering consultancy, high performance electronics and component manufacture services outside of its classic motorsport customer base. Current publicised projects range from an 80 cc (4.9 cu in) diesel engine for unmanned aerial vehicles, through to an engineering partnership on one of the world's most powerful normally aspirated road car engines.

Cosworth supplied engines to one F1 team in 2013, the Marussia F1 Team.[2]

Engines[edit]

Early types[edit]

The following is the list of initial products with cylinder heads modified, but not originally designed by Cosworth, on Ford Kent blocks. The exceptions were Mk.XVII and MAE, which had intake port sleeves for downdraft carburetors brazed into the stock cast iron head in place of the normal side draft ports, thus could be considered Cosworth designs.

TypeYearBlockDisplacementClaimedDescriptionMainly For
Mk.I1959105/107E997 cc-Experimental one-off to test cam designsDevelopment of A2 and A3 camshaft
Mk.II1960105/107E997cc75 bhpFirst series production engine, A2 camLotus Mk.VII
Mk.III1960105/107E997cc85-90 bhpA3 Cam, optional dry sumpFormula Junior
Mk.IV1961105/107E1098 cc90-95 bhpMk.III with larger bore.Formula Junior
Mk.V1962109E1340 cc80 bhpSeries production road engineLotus Mk.VII
Mk.VI1962109E1340 cc105 bhpRacing version of Mk.VLotus Mk.VII
Mk.VII1962109E1475 cc120 bhpMk.VI with larger bore.1.5 Litre class
Mk.VIII1963116E1498 cc90 bhpImproved Mk.V on 5 main bearing blockLotus Mk.VII
Mk.IX1963116E1498 cc120-125 bhpRacing version of Mk.VIII1.5 Litre class
Mk.X1963116E1498 cc-Experimental one-off Lotus TwinCamDevelopment of Mk.XII and XIII
Mk.XI1963109E1098 cc100-110 bhpImproved Mk.IV, dry sumpFormula Junior
Mk.XII1963116E1594 cc140 bhpRacing Lotus TwinCam, stock crank and rods, dry sumpLotus 20B, 22, 23
Mk.XIII1963116E1594 cc140-150 bhpImproved Mk.XII with steel crank and rods, dry sumpFormula B, Lotus 22, 23B, 23C
Mk.XIV1963116E1498 cc100 bhpImproved Mk.VIIILotus Mk.VII
Mk.XV1963116E1594 cc135-145 bhpRacing Lotus TwinCam, steel crank and rods, wet sumpLotus 26R, Lotus Cortina
Mk.XVI1963116E1498 cc140-150 bhpMk.XIII for 1.5L classNote[5]
Mk.XVII1964109E1098 cc120 bhpImproved Mk.XI, downdraft intake ports, dry sumpFormula Junior
MAE1965109E997 cc100-110 bhpImproved Mk.III, downdraft intake ports, dry sumpFormula 3

In addition to the above, Cosworth designed and provided the assembly work for Lotus Elan Special Equipment optional road engines with special camshafts and high compression pistons.

The final model of the above initial series was the MAE in 1965, when new rules were introduced in Formula 3 allowing up to 1,000 cubic centimetres (61.0 cu in) engines with 36mm intake restrictor plate. MAE used one barrel of a two barrel Weber IDA downdraft carburetor with the other barrel blanked off. The domination of this engine was absolute as long as these regulations lasted until 1968. As Cosworth had a serious difficulty meeting the demand, the MAE was mainly sold as a kit. This experience led to the later FVA/DFV contract to be drawn where the responsibility of development rested with Cosworth, and the manufacturing right and responsibility rested with Ford. There also were some specially cast iron heads with similar dimensions to these brazed heads with Titanium alloy valve spring retainers called the 'Screamer Head' for MAE in later years.

The SCA series[edit]

A year before the introduction of the MAE, the single overhead cam two valve SCA was introduced. It was a 997 cc engine based on Ford Cortina 116E block that was designed for Formula 2, and featured the first totally Cosworth-designed head, Laystall forged crankshaft, steel main bearing caps and pistons with only one compression ring and one oil scraper ring each. Cylinder head to block sealing was by a head gasket incorporating Cooper Rings. The basic configuration was quite similar to Coventry Climax FWE on Lotus Elite including its SOHC reverse-flow design, except for a series of 7 spur gears (1 on crank, 2 intermediary gears on 2 fixed shafts mounted on the front cover back plate, 1 on the 116E camshaft used as a jackshaft, 2 on a common fixed shaft in the head, 1 on the camshaft) driving a 5 bearing camshaft and the Ford 5 main bearing iron block. The intake ports and the oil scavenge pickup for dry sump lubrication were canted 25 degrees, so they faced straight up and down, respectively, when the engine is mounted 25 degrees from vertical to the right for a lower center of gravity.

The SCA initially had two 40DCM2 Weber twin-choke downdraft sand-cast carburetors mounted on top to produce 115 hp, which was replaced by Lucas fuel injection in 1966, eventually reaching 140 hp.

Longer stroke SCB was built to compare against 1498 cc Mk.XVI, and upon proving its superior power against the Mundy-designed 2 valve crossflow DOHC head, it acted as the benchmark for the development of FVA to measure the benefits and shortcomings of a four valve crossflow DOHC design. It was the results of this four valve development work that formed the basis for many of the Cosworth engines that followed.

A larger 85 mm bore SCC with the same short-stroke 5 bearing crankshaft as the SCA was built and sold for SCCA 1.1 Litre sports car class.

TypeYearBlockDisplacementClaimedDescriptionMainly For
SCA1964116E997 cc115-140 bhpGear-driven SOHC, reverse-flowFormula Two
SCB1964116E1498cc175 bhpExperimentalDevelopment of FVA
SCC1965116E1098cc135 bhpSCA with larger boreNorth American sports car racing

The FVA series[edit]

The Cortina Crossflow block was also the basis for the FVA, an F2 engine introduced in 1966, and developed under the same contract as the DFV, for the new 1.6-litre engine rules. This engine featured 16 valves operated by twin overhead camshafts driven by a train of 9 gears. The metering unit for the Lucas mechanical fuel injection was rotated by a toothed belt from the gear-driven inlet cam, while the exhaust cam directly drove an alternator on the rear of the head. It produced 225 bhp (168 kW) at 9000 rpm. This engine dominated the category until 1971, and was also used in sports car racing in 1.8 Litre form as the FVC.

The cylinder head on the FVA pioneered many of Duckworth's ideas that would be used on the DFV and a mule for the 8 cylinder engine development, FVB, was built. However, the distance between the two camshafts and the valve inclination angle were larger than on DFV for the series.

The larger displacement FVD was designed and released for endurance racing in 1975, that displaced 1,975 cc (120.5 cu in) on the aluminium block developed for BDG. The FVD produced only 275 bhp (205 kW), down from the 325 hp (242 kW) that other twin-cam four cylinders such as the Hart 420S produced but was more reliable. One was campaigned in the CanAm series in 1978 in the Osprey SR-1, built and driven by Dan Hartill.

TypeYearBlockDisplacementClaimedDescriptionMainly For
FVA1966116E1598 cc218-225 bhpGear-driven DOHC, crossflow, four valveFormula Two
FVB1967116E1498 cc200 bhpExperimentalDFV development
FVC1969116E1790 cc235 bhpFVA with larger bore2 L Sports car racing
FVD1975BDG/Aluminium1975 cc275 bhpFVC with yet larger bore on aluminium block2 L Sports car racing

The DFV (Double Four Valve)[edit]

Main article: Cosworth DFV
A Ford-Cosworth DFV installed in the back of a Lotus 49

In 1966, Colin Chapman (Lotus Cars founder and principal of Team Lotus) persuaded Ford to bankroll Keith Duckworth's design for a new lightweight 3,000-cubic-centimetre (183.1 cu in) Formula One engine.[2] Cosworth received the order along with the £100,000 that Ford felt it adequate to spend on such an objective. The contract stipulated that a four-cylinder Ford-based F2 engine would be developed as proof of concept (see the FVA above) and that a pure Cosworth V8 would be built based on this.

The DFV design used a similar cylinder head to the one Duckworth had prototyped on the four-cylinder FVB unit on a custom Cosworth cylinder block and crankcase, forming a single 90° V8 engine, thus creating a legend in its own right, the DFV - literally meaning "Double Four Valve". This engine, and its derivatives were used for a quarter of a century, and it was the most successful in the history of Formula One / Grand Prix motor racing. Winning 167 races in a career lasting over 20 years, it was the product that put Cosworth Engineering on the map. Although originally designed for Formula One, the engine has been modified to be used in a range of categories.

The DFV won on its first outing, at the 1967 Dutch Grand Prix in the hands of Jim Clark, fitted to a Lotus 49, and from 1968 was available for purchase to any F1 team that wished it. During the 1970s, it was common for almost the entire field (with the notable exception of Ferrari) to use one of these engines - this at a time when independent wealthy individuals could buy exactly the same engine off the shelf that was also being used by McLaren et al. Most teams just built a tub around a Cosworth DFV and a Hewland gearbox. It won a record 155 World Championship races, the last being Detroit in 1983, powering a Tyrrell driven by Michele Alboreto.

Although the DFV (bore: 3.373 inches (85.67 mm), stroke: 2.555 inches (64.90 mm), displacement: 2,992.98 cc (182.6 cu in)) with 410 bhp (306 kW; 416 PS) at 9,000 rpm did not produce as much power as some of its rival 12-cylinder engines, it was lighter, resulting in a better power to weight ratio. In addition to being lighter, it was also made a structural part of the car itself, by placing load bearing arms to stress the block. These design aspects appealed tremendously to the genius of Colin Chapman who used them to the fullest extent.

The DFY, introduced in 1982 was a further evolution of the DFV for Formula One, with a shorter stroke and a DFL bore (bore: 3.543 inches (89.99 mm), stroke: 2.316 inches (58.83 mm), displacement 2,993.38 cc (182.7 cu in)) with 520 bhp (388 kW; 527 PS) at 11,000 rpm, thereby producing more power, but still unable to fight against the turbocharged cars of the day. It was the advent of turbocharged engines in Formula One which sounded the death knell for the venerable DFV, and in 1986 Cosworth returned to the lower formulae preparing the DFV for the newly created Formula 3000, with the installation of a compulsory 9,000 rpm rev limiter, which scaled power back from 500 to 420 bhp (313 kW; 426 PS); the DFV remained in this class until 1992. The final F3000 engines gave 500 bhp (373 kW; 507 PS), almost equalling the 1983 DFV which gave 510 bhp (380 kW; 517 PS) at 11,200 rpm.

In Formula One, a new DFV-based design was introduced for the new 3,500 cc (213.6 cu in) normally aspirated rules in 1987. The DFZ was produced as an interim model, but in 1988 Cosworth created the DFV's final evolution, the DFR, which soldiered on in F1 with smaller teams until 1991, scoring its last points - including a pair of second places by Jean Alesi - with Tyrrell in 1990.

The DFV has recently been given a new lease of life thanks to the interest in Classic F1 racing, which was given a World Championship status by the FIA in 2004.

DFV variants[edit]

The DFV spawned a number of derivations. In 1968; Cosworth created the DFV's first derivation, a 2,500 cubic centimetres (152.6 cu in) version for the Tasman Series, the DFW. DFV to DFW conversion simply involved substitution of a short-stroke crank and longer connecting rods.

Cosworth DFX
Cosworth DFS

One of the most successful and longest-lived projects of Cosworth has been its CART / Champ Car engine program. In 1975; Cosworth developed the DFX, by destroking the engine to 2,650 cc (161.7 cu in) and adding a turbocharger, the DFX became the standard engine to run in IndyCar racing, ending the reign of the Offenhauser, and maintaining that position until the late 1980s. Ford backed Cosworth with creating a new interim design for IndyCar racing in the late 1980s, the DFS, which merged DFR technology into the ageing DFX design, but it was eventually rendered obsolete by advancing technology.

While designed as an F1 engine, the DFV was also used as in endurance racing, although its flat-plane design led to destructive vibrations putting stress on devices surrounding the engine, especially the exhaust system. The first sports car to use a DFV, the Ford P68, failed to finish a single race because of repeated mechanical and electrical failures. Despite this handicap the DFV won the 24 hours of Le Mans twice in its original 3.0 Litre form for Mirage and Rondeau (although the Mirage win in 1975 was with a significantly de-tuned unit).

The DFL for endurance racing was developed for the 1983 season. It came in two versions: one with 3,298 cc (201.3 cu in) for "Group C Junior" class (700 kg minimum weight, 55 Litres fuel, 5 refuelings/1000 km) and the other with 3,955 cc (241.3 cu in) for Group C (C1 Class). Whilst the former version soon became known for its reliability and efficiency, proving itself for the class intended for smaller 2 Litre engines, the latter version was a step too far and is largely remembered as a failure.

The BDA series[edit]

Aluminium block 2L BDG on Chevron B19

Cosworth solidified its association with Ford in 1969, by developing a double overhead camshaft (DOHC) 16-valve inline four-cylinder engine for road use in the Ford Escort. As Keith Duckworth was busy designing and developing the DFV, the project was assigned to Mike Hall, who created the 1601 cc BDA on the Kent block for homologation purposes. The camshafts were driven by a toothed belt developed for Fiat 124, hence the name BDA, literally meaning "Belt Drive, A type". It was designed for FIA Group 2 and Group 4 on either rallying or touring car racing purpose. The nominal homologation at 1601 cc capacity meant that BDA-engined cars competed in what was usually the top class (1600 cc and up) so were eligible for overall victories rather than class wins.

In 1970, the 1701 cc BDB was created for the Escort RS1600, and this engine received fuel injection for the first time in the series as 1701 cc BDC. Two years later, the BDA series was adopted for Formula 2; first came the 1790 cc BDE, then the 1927 cc BDF eventually reaching a maximum of 1975 cc BDG in 1973. As the bore size reached ever closer to the bore center distance, leaving little space in between cylinders, the all three types had brazed-in cylinder liners to the block. As a departure from the Ford iron block, the BDG received a newly designed aluminium block soon after, and this cylinder block was used as a replacement part in rebuilding many other BD series engines as well as some Mk.XIII engines.

The iron block was also used for smaller displacements; starting with the very successful 1599 cc Formula Atlantic BDD in 1970, followed by the 1098 cc BDJ and 1300 cc BDH variants for SCCA Formula C and sports car racing, respectively. There was even a one-off 785 cc version built by Cosworth employees Paul Squires and Phil Kidsley; fitted with a Lysholm supercharger it was installed in a Brabham BT28 Formula 3 chassis and competed in the British Hill Climb Championship as the Brabham-Lysholm.[6]

In 1975, 1599 cc big valve BDM (225 bhp) was developed with fuel injection for Formula Atlantic, and a 'sealed engine' version BDN (1599 cc, 210 bhp) followed in 1977 for Canadian Formula Atlantic series.

1803 cc BDT on Ford RS200 with turbochager and wastegate valve more visible than the engine

The turbo charged 1778 cc BDT was created in 1981, which powered the never-raced RWD Escort RS1700T. In 1984, 4WD Ford RS200 debuted with a 1803 cc version of BDT, which was created for Group B rallying. Between 1984 and 1986 the BDT engine was used in Group C endurance racing by Roy Baker, in class C2 using the Tiga GC284, GC285 and GC286. Later in 1986, a 2137 cc version was created by Brian Hart using a bespoke aluminium block and a large intercooler for RS200 Evolution, just as Group B was cancelled by the FIA. This BDT-E ('E' for Evolution) produced over 600 bhp (447 kW; 608 PS) in Group B 'rallycross' boost level, normally producing 530 - 550 bhp (410 kW; 558 PS) on a lower but sustainable boost.

In 1983, the BD series saw its second road engine incarnation (the first being the original BDA and BDB), the BDR, which was a BDA or BDB sold in kit form for the Caterham Super Seven in 1601 cc (120 bhp) and in 1701 cc (130 bhp) formats.

The 1599 cc BDD engine won a number of championships around the world in Formula Atlantic and Formula Pacific during the 1980s, including powering drivers such as Alain Prost and Roberto Moreno to wins in the Australian Grand Prix in the immediate years before the race became part of the Formula One World Championship in 1985.

In 1970, Ford asked Weslake and Co of Rye to build the BDD for them, and by the end of 1970, the production line was installed at Rye and production was under way. These engines were often called the 'BDA', but were 1599 cc BDDs eligible for under 1.6 Litre class.

The Hart 420R and the Zakspeed F1 engines owe much to the BDA series, being essentially an aluminium-block derivative using similar heads.

The GA V6[edit]

The GA V6 in 1974 Ford Capri DRM

A fuel-injected belt-driven DOHC GA (also called the GAA) was based on the 60 degree V6 block of Ford Essex, and was used for the Ford Capris raced in Group 2 in the early 1970s. This had a capacity of 3,412 cc (208.2 cu in), and was highly competitive against the BMW straight-sixes. The GA was also used in the later years of Formula 5000 in Europe.

The FBA and FBC V6[edit]

The FBA V6 in a MkIII Granada Scorpio 24v

The FBA and FBC engines were found in the Ford Granada and Ford Scorpio Ultima. The FBA came first in 1991 also known as the 'BOA', it was based on the Ford Cologne V6 used in the Ford Sierra and Ford Capri and other models and was a twin overhead camshaft 24valve conversion for more power, producing 195 metric horsepower (143 kW; 192 bhp) and better idle quality.

Cosworth FBA

In 1995, with a new version of the Scorpio, it was upgraded with a wider torque spread and higher power - to 204 PS (150 kW; 201 hp), from a variable intake system and reprofiled cams. The NVH was improved with a change from a single chain to drive all four camshafts - to one chain to drive one bank of cams and a second for the other bank, this engine was known as the 'BOB'.

A racing version was also available for a short time - FBE - with individual throttle butterflies for each cylinder.

FBB and FBD engines did exist as development engines but these were never released.

The two production engines were always mated to an automatic gearbox but have become popular in the custom car scene where they have been mated to the 4x4 manual transmission and the rear-wheel-drive manual transmission from the Ford Sierra XR4 and XR4x4. There are also companies that offer twin and single turbo conversions, and other modifications to increase power to usually around 400 bhp (300 kW). These engines can be bought relatively cheaply and providing they are well serviced, engines have been known to cover over 200,000 miles without major work being required.[citation needed]

The YB series[edit]

A later version of the YB engine was used in the Escort RS Cosworth

The YB series of 1,993 cc (121.6 cu in) engines are based on the older Pinto engine block,[7] and were introduced in the road-going Ford Sierra RS Cosworth in 1986 with 204 PS (150 kW; 201 bhp). With 5,000 units built for homologation purposes in Group A, both for rallies and touring cars. Racing versions could develop about 400 hp (298 kW; 406 PS). A limited edition evolution model was introduced in 1987, the RS500, with power now exceeding 550 hp (410 kW; 558 PS) in full racing trim. The RS500 came to dominate touring car racing in its heyday from 1987 to 1992, winning multiple championships and major races in Europe, Japan and Australia. This included wins in the three major races, the Spa 24 Hours held at Spa-Francorchamps in Belgium, the Bathurst 1000 at Mount Panorama in Australia, and the InterTEC 500 at Fuji in Japan.

At the end of its life in Group A in 1992, the Australian Sierra teams were reportedly getting around 600 bhp (447 kW; 608 PS) from the YB engines.

The various colour cam covers that distinguished each version were as follows: Red: YBB (Sierra Cosworth 2wd, both 3-door and Sapphire), YBD (Sierra RS500), YBJ (Sierra Sapphire 4wd, non cat); Green: YBG (catalyst equipped 4x4 Sierra Sapphire Cosworth); Blue: YBT (large-turbo Escort Cosworth); Silver: YBP (small-turbo Escort Cosworth).

Further evolutions of the YB included a reduced-emissions road version, as well as the block used in the Escort RS Cosworth (which used the Sierra floorpan). The engine stopped being used on new cars in 1997, with the Focus WRC and road-going Focus RS relying on Zetec designs.

The GBA V6[edit]

Cosworth experimented with turbocharged BD derivatives, before settling on an all-new turbocharged 1,500 cc (91.5 cu in) V6 engine to be badged as the Ford TEC (internally it was known as the GB-series). This had a long development history dating back to the 1984 British Grand Prix at Brands Hatch where Cosworth and Ford's competition department agreed to build a new turbo engine to replace the outdated DFV. The TEC raced only briefly, in 1986, with the Haas Lola team and in 1987 with the Benetton team. The development of the GBA engine at Cosworth became the subject of a British TV documentary in Channel Four's Equinox series, broadcast in 1986.

Cosworth GBA

The GBA was designed by Keith Duckworth who originally chose to try and develop a modified 4 cylinder sports car engine as he believed 4 cylinder engines were more compact and economical than a V6. However, after numerous failures of the test engines which were eventually traced to an incurable vibration at the crankshaft, Duckworth designed an all new 120° V6 engine instead, the same configuration as the Ferrari V6 turbo engine. As around 4 months had been lost in trying to get the 4 cylinder engine to work, Ford and Cosworth's plan for the engine to debut with Haas Lola in 1985 was pushed back to the 1986 season.

The engine made its Formula One debut with 1980 World Champion Alan Jones driving Haas Lola's new car, the Lola THL2 at the 1986 San Marino Grand Prix. Jones qualified in 21st place and retired after 28 of the races 60 laps due to overheating. Jones also recorded the engine's first finish when he placed 11th in the Belgian Grand Prix. Jones and team mate Patrick Tambay captured the Ford V6 turbo's first ever points when they finished 4th and 5th respectively in the Austrian Grand Prix, with Jones backing up in the next race in Italy with a 6th placed finish, the final points the engine would gain in 1986.

Producing approximately 900 bhp (671 kW; 912 PS), the turbocharged V6 is the most powerful Formula One engine designed and built by Cosworth. With Haas Lola not competing in 1987, Benetton, having lost the use of the 4 cylinder BMW engines when the German giant pulled out of Formula One, signed with Ford to race their V6 for the season. While in 1986 turbo boost had been unrestricted by the rules, 1987 saw the FIA introduce the pop-off valve to the turbocharged engines in a two-year plan to outlaw the turbos and make all Formula One engines 3.5 litres and naturally aspirated by the start of the 1989 season. While Cosworth adapted the TEC to 1987's 4.0 Bar turbo limit and the new 195 litre fuel limit, development of the V6 turbo engine which would be obsolete in less than two years virtually stopped. Cosworth instead worked on the DFR that was introduced with Benetton in 1988. The turbo engine would be more successful with Benetton in 1987, with Teo Fabi taking the engine's first podium with third in Austria, followed by its last podium when Thierry Boutsen also scored third in the last race of the season in Australia.

The HB V8[edit]

DFV/DFZ/DFR replacement was designed by Geoff Goddard to result in 3,498 cc (213.5 cu in) (96mm x 60.4mm) HB V8, which was introduced with the Benetton team midway through 1989 making its debut at the French Grand Prix, and won the Japanese Grand Prix that year. The HB V8 engine exploited a narrower 75° vee-angle than the 90° DFV for 700 bhp (522 kW; 710 PS) at 13,000 rpm. As Ford's de facto works team, Benetton maintained exclusivity with this model through the rest of 1989 and 1990. 1991 saw the introduction of customer units, two specifications behind their works equivalents. In 1991, these were supplied to the fledgling Jordan Grand Prix outfit, and for 1992, Lotus. 1993 saw the customer deal extended to McLaren, who won five Grands Prix with Ayrton Senna that year.

A Jaguar-badged version of the HB was developed by Tom Walkinshaw Racing to the tune of 650 bhp at 11,500 rpm for sports car racing, fitted to the extremely successful Jaguar XJR-14.

The EC, ECA, ED, EDM and ED 2/4 V8[edit]

The HB was developed into 3,498 cc (213.5 cu in) (96mm x 60.4mm) EC V8 for the 1994 season. This engine, producing about 740 bhp at 13,800rpm, was badged as Ford Zetec-R, that Michael Schumacher won the Drivers World Championship with Benetton (his first of a record 7 championships), in 1994. This was the last Ford powered F1 title.

For the 1995 season, the F1 engine regulation changed to 3 Liters, and the EC's bore and stroke were changed to 94mm x 53.9mm, resulting in 2,992 cc (182.6 cu in) ECA, which was introduced at about 600 bhp, and developed to 610 to 630 bhp at 14,000rpm.

Customer unit Cosworth ED (not badged as Ford Zetec-R) for non-works teams was also made for 1995 with about 580 bhp for Minardi, Simtek (called the EDB), Pacific Racing (EDC) and Forti (EDD) teams. Minardi realised the power deficiency before the season and asked Magneti Marelli to develop a replacement engine management system, with which the engine was called the EDM. Cosworth later updated the ED to ED 2/4 for Tyrrell and Lola with 2,995 cc (182.8 cu in) (94mm x 53.95mm) displacement for 600 bhp, which was used until the end of 1997 season.

The JD, VJ and VJM V10[edit]

In order to produce a higher power at higher rpm, a completely new 2,992 cc (182.6 cu in) (89mm x 48.1mm) JD 72° V10 was designed for 1996, which produced about 670 bhp at 15,800rpm, and used by Sauber Formula One team. This engine was further developed into VJ and VJM with the same V-angle, bore and stroke, reaching 720 bhp for racing, 730 bhp for qualifying, at 16,500rpm. All three of these engines were badged as Ford Zetec-R as well, and used by several teams.

Other Formula One engines[edit]

The Stewart Grand Prix team effectively became the Ford works team, and used Cosworth CR-1 engines from its first season in 1997, which was a much lighter version of VJM, ultimately reaching 770 bhp at 16,500rpm by 2001. Over the next few years Ford had increased its involvement with the Stewart team, and finally bought the team, renaming it Jaguar Racing for 2000. Jaguar pulled out of F1 at the end of 2004, but the team (renamed Red Bull Racing) continued to use Cosworth V10 engines until switching to a Ferrari V8 for 2006. Minardi also used re-badged Cosworth engines until 2005.

Williams began testing the new CA2006 2.4-litre V8 in November 2005, and used the Cosworth V8 engines for the 2006 season. In the same year, Scuderia Toro Rosso used detuned V10 engines based on the 2005 units.

In 2007, however, the company was left without a partner when Williams chose to switch to Toyota power, and Scuderia Toro Rosso made the switch to Ferrari engines (as used in 2006 by their mother team Red Bull Racing).

In Max Mosley's letter following the withdrawal of Honda from Formula One in December 2008, it was announced that Cosworth had won the tender to provide a standard engine to any interested participants. The new engine would become the standard design and manufacturers could opt to use whole units, construct their own from designs provided by Cosworth, or produce their own engine with the caveat that it be limited to the same power as the new "standard" engine.

In 2010 Cosworth returned as the engine supplier for Williams and three new teams; Hispania Racing, Lotus F1 Racing and Virgin Racing. The CA2010 is the same 2.4-litre V8 base of the CA2006 used by Williams, but has been re-tuned for the current 18,000 rpm limit required on all engines, down from its original 20,000 rpm implementation.[8] First units were ready and shipped to teams in mid-January for fitting 2 weeks prior to first track testing for the year.[9]

Other IndyCar and Champ Car engines[edit]

A 2004 Champ Car display engine

Cosworth designed a series of replacements for the DFS to be used in IndyCar and Champ Car racing: the X-series, beginning in 1992 with the XB. The XF was developed for the 2000 season to replace the XD, and was chosen as the spec engine for the Champ Car World Series in 2003. The most recent derivative of the XF, the 2,650 cubic centimetres (161.7 cu in) XFE quad-cam 90° V8 overhead camshaft, continued in that role through the 2007 season. The Champ Car World Series imposed a rev limit of 12,000 rpm down from the over 15,000 rpm of 2002. The 2004 model of the XFE had a rated power of nominal 750 horsepower (559 kW; 760 PS) at 1,054 mmHg (intake boost pressure), and a maximum power of 800 bhp (597 kW; 811 PS) at 1130 mmHg (during Push-to-Pass). The 2004 XFE maximum speed was 12,000 rpm (rev limited) and torque of 490 N·m (361 lbf·ft). The aluminium and iron turbo housing ran a boost of 5.9 psi at sea level (= boost of 12 inches of mercury which is 41.5 inches of mercury absolute). The Methanol-fuelled engine used a steel crankshaft and aluminium alloy pistons. Weight was 120 kg (264.6 lb) and length was 539 mm (21.2 in).

In 2007, the Ford name was removed from the engine[citation needed] pieces as the manufacturer elected not to continue sponsorship of the series.[citation needed] Several other engine changes were made, notably the removal of the calibrated "pop off valve" designed to limit turbo boost pressure, replaced by engine electronics. The rated life of the engine was 1,400 miles (2,300 km) between rebuilds. Engines were sent by the race teams to Cosworth for the rebuild. In 2007, Champ Car switched to the new Panoz DP01 chassis, which was said to provide better ducting of airflow into the engine. The Champ Car World Series merged into the Indy Racing League IndyCar Series prior to the 2008 season, and Cosworth does not currently provide engines to any American open wheel racing series.[citation needed]

There is evidence that Cosworth was working on a 3,400 cc (207.5 cu in) push-rod V8[citation needed] along the lines of the Ilmor/Mercedes 500I to exploit the peculiar loophole in the Indianapolis 500 rules on the definition of the word "pushrod engine", permitting such engines with extremely short pushrods higher turbocharger boost - this was assigned a project code CD but seemingly never completed.

In mid-2003, Cosworth provided the 3.5 L V8 XG badged as a Chevrolet Gen 4 engine to IRL IndyCar Series teams after the proprietary Chevrolet Gen 3 engine proved inadequate against rival Hondas and Toyotas during the 2003 season.[citation needed] While many teams left Chevrolet after the 2003 season, those that stayed saw a significant improvement in performance with the new "Chevworth" engine compared to their previous units. The XG finished second in its first race at Michigan on July 27, 2003. Sam Hornish, Jr. went on to win 3 races that season with the new XG. The XG was reduced in size to 3 L for 2004 season and it won one race in 2005 during Chevrolet's final season in IRL.

Other Formula Atlantic engines[edit]

Currently these are 300 horsepower (224 kW; 304 PS) 2,300 cubic centimetres (140.4 cu in) inline-four engines based on the Mazda MZR engine developed in cooperation with Mazda. Changes includes a billet crankshaft, barrel throttle bodies, new cylinder head with larger valves, pistons, con rods and camshafts. A detuned 250 horsepower (190 kW; 250 PS) version, targeting club racers, is sold to the consumer market. This engine retains the standard crankshaft, and has a different cylinder head. Both engines are built by Cosworth in Torrance, California, under the guidance of newly appointed technical designer Wayne Merry (formerly of Cosworth in Worcester UK).

Other road engines[edit]

Best known in Europe for its relationship with Ford[2] - in particular because of the COSWORTH name in the vehicle title on the high-performance Ford Sierra RS Cosworth and Ford Escort RS Cosworth,[2] but also in the creation of other Ford models; the Escort RS1600, Escort RS1800, RS200, and Scorpio 2.9i 24V.

1976 Chevrolet Cosworth Vega
Cosworth Vega 122 cu in DOHC L4-110 hp

In the US, the name has also appeared in the title of a road car (well before it did in Europe) as the Cosworth version of the Chevrolet Vega. Only 3,508 1975 and 1976 Cosworth Vegas were produced from March 1975 through 1976. The engine features the Vega sleeveless, aluminium-alloy block fitted with forged components. The twin-cam, 16-valve, aluminium cylinder head design was assisted by Cosworth, but Chevrolet did the development work. The engine features electronic ignition, Bendix electronic fuel injection, and stainless steel headers.[10] The final US emissions standardised version produces 110 bhp. Cosworth's EA racing version was not successful due to engine block structural failures. Chevrolet later produced a heavy-duty 'off-road' block with thicker walls to better withstand the racing application, but by that time Cosworth had moved on. Projected first year sales of the Cosworth Vega had been 5,000. With only 3,508 cars produced and many unsold, the car was discontinued. 1,500 hand-built Cosworth Vega engines were simply scrapped for lack of demand.[11]

Other published projects for Adam Opel AG include the Opel Ascona 400 / Manta 400 rally cars and the 2.0L 16V engines in the Opel Kadett, Opel Astra GSi, Opel Vectra and Opel Calibra turbo.[citation needed]

Other companies known to have benefitted from the Cosworth engineering input are Mercedes-Benz (with the 190 E 2.3-16), Rolls-Royce, and Audi (notably their RS cars).[citation needed]

Cosworth’s involvement with Mercedes-Benz came with moves in the mid-1980s from the German manufacturer to re-enter motorsport after retiring from direct factory participation after the tragic 1955 Le Mans crash which killed 80 spectators. Mercedes-Benz was looking to create a Group B rally car out of its new W201 Chassis (190E Model) and turned to the expertise of Cosworth to shorten the development time for this project.[citation needed]

2.3-16 Targa Car

The request was a huge surprise for Cosworth, and the original brief for a 320 bhp engine based on the 136 bhp Mercedes M102 2.3-litre SOHC 4-cylinder engine was duly passed to Mike Hall, who “drew the famed DFV and BDA engine”.[12] Designed around the existing M102 head bolt pattern, the new twin cam, 16-valve, pentroof head, had its valves set at 45° included angle, rather than the 40° angle of the BDA.[12] The valves were the biggest that could be fitted into the combustion chamber. Flat top pistons delivered the 10.5:1 compression ratio. The new Cosworth WAA[13] engine also was Cosworth’s first one-piece head, i.e. the camshaft carrier was cast integral with the head itself. Again the constraints of the existing head-bolt pattern meant that Hall had to shift the camshaft bearings from outside each pair of camlobes as in the BDA to in between each cylinder's pair of cam lobes. The upside being that this configuration made for less flex at high rpm.[12]

The advent of the AWD turbo Audi Quattro gave the rear-wheel-drive, normally aspirated 190E rally car no chance of being successful and the competition car was stillborn. Instead Mercedes-Benz decided to recoup its development cost by selling the car as a road going sports-sedan. Hall detuned the WAA race engine to 185 bhp by reducing the port diameters and a more restrictive fuel injection and induction was substituted for the race items to complete the detune.[12] All WAA 2.3-16 engines were built in the Cosworth factory with the heads being produced by the Coscast method.

Cosworth assisted with the later 2.5-16 engine (WAB), and the short-stroke 2.5-16 Evo engines (WAC) although these were all manufactured in house by Mercedes-Benz.[citation needed] The 190E 2.3-16 became the basis for privateer Mercedes entries into the DTM from 1988. The short-stroke 2.5-16 190E EVO II was race-developed to 375+ bhp, gaining the 1992 DTM crown with Klaus Ludwig at the wheel.

A 4,300 cc (262.4 cu in) V10 designated WDA was also built and tested in a Volvo S80 in 1997, but this did not see production.

Cosworth F1 car[edit]

The four-wheel drive Cosworth Formula One car

Cosworth made an attempt at designing a full Formula One Grand Prix car in 1969. The car, designed by Robin Herd, used an original 4WD transmission designed by Keith Duckworth (different from the Ferguson used by all other 4WD F1 cars of the 1960s) and powered by a magnesium version of the DFV unit. The car was planned to drive at the 1969 British Grand Prix, but it was silently withdrawn. When Herd left to form March Engineering, the project was cancelled. The external design of the car was a product of Herd's use of Mallite sheeting (a wood-aluminium laminate composite) for the principal structural monocoque sections, a technique he pioneered on the first McLaren single-seat cars, including the McLaren M2B of 1966.

Complete Formula One World Championship results[edit]

(key) (Races in bold indicate pole position) (Races in italics indicate fastest lap)

YearEntrantChassisEngineTyresDrivers12345678910111213141516171819PointsWCC
1963Canadian Stebro RacingStebro Mk IV109E 1.5 L4DMONBELNEDFRAGBRGERITAUSAMEXRSA0NC
Peter Broeker7
Ted LanfearLotus 22Brausch Niemann140NC
David ProphetBrabham BT6David ProphetRet0NC
1964Bob Gerard RacingCooper T71/T73109E 1.5 L4DMONNEDBELFRAGBRGERAUTITAUSAMEX0NC
John Taylor14
John Willment AutomobilesBrabham BT10Frank GardnerRet0NC
1965John Willment AutomobilesBrabham BT10109E 1.5 L4DRSAMONBELFRAGBRNEDGERITAUSAMEX0NC
Paul Hawkins9
David Prophet RacingDavid Prophet14
Ted LanfearLotus 22Brausch NiemannDNQ0NC
Brian RaubenheimerLotus 20Brian RaubenheimerWD
Dave CharltonDave CharltonDNPQ
Trevor BlokdykCooper T59Trevor BlokdykDNQ0NC
Bob Gerard RacingCooper Cooper T73Alan RollinsonDNQ
1967Team LotusLotus 49Cosworth DFV 3.0 V8FRSAMONNEDBELFRAGBRGERCANITAUSAMEX442nd
Jim Clark16Ret1RetRet311
Graham HillRetRetRetRetRet4Ret2Ret
Eppie WietzesDSQ
Giancarlo BaghettiRet
Moisés SolanaRetRet
Matra SportsMatra MS7Cosworth FVA 1.6 L4DJean-Pierre BeltoiseDNQ770NC
Johnny Servoz-GavinRet
1968Team Lotus Gold Leaf Team LotusLotus 49
49B
Ford Cosworth DFV 3.0 V8FRSAESPMONBELNEDFRAGBRGERITACANUSAMEX621st
Jim Clark1
Graham Hill211Ret9RetRet2Ret421
Jackie OliverRet5NCRet11RetRetDNS3
Mario AndrettiDNSRet
Bill BrackRet
Moisés SolanaRet
Rob Walker Racing TeamJo SiffertRetRet7Ret111RetRetRet56
Bruce McLaren Motor RacingMcLaren M7AGBruce McLarenRetRet1Ret8713Ret262492nd
Denny Hulme25RetRet54711RetRet
Anglo American RacersDan GurneyRet4Ret
Joakim Bonnier Racing TeamMcLaren M5AJo BonnierDNQRet8RetDNA6RetRet
Matra International (Tyrrell Racing)Matra MS9
MS10
DJackie StewartRet41361Ret617453rd
Johnny Servoz-GavinRet2RetRet
Jean-Pierre Beltoise5
Matra SportsMatra MS7
MS11
6Ret829RetRet5RetRetRet
1969Matra International (Tyrrell Racing)Matra MS10
MS80
MS84
Ford Cosworth DFV 3.0 V8DRSAESPMONNEDFRAGBRGERITACANUSAMEX661st
Jackie Stewart11Ret11121RetRet4
Jean-Pierre Beltoise63Ret82912†34Ret5
Johnny Servoz-Gavin6NC8
Motor Racing Developments LtdBrabham BT26A
BT26
GJack BrabhamRetRetRet6Ret24349 (51)2nd
Jacky IckxRet6Ret5321101Ret2
Frank Williams Racing CarsDPiers CourageRet2RetRet5Ret5Ret210
Silvio Moser Racing TeamBrabham BT24GSilvio MoserRetRet7RetRet611
Gold Leaf Team LotusLotus 49B
63
FGraham Hill2Ret176749RetRet473rd
Jochen RindtRetRetRetRet4Ret231Ret
Mario AndrettiRetRetRet
Richard Attwood4
John MilesRet10RetRetRet
Rob Walker Racing TeamJo Siffert4Ret329811†8RetRetRet
Team GunstonDJohn LoveRet
Ecurie BonnierFJo BonnierRetRet
Pete Lovely Volkswagen Inc.Pete LovelyRet9
Bruce McLaren Motor RacingMcLaren M7A
M7C
M9A
GDenny Hulme34648RetRet7RetRet138 (40)4th
Bruce McLaren525Ret43345DNSDNS
Derek BellRet
Team LawsonDBasil van RooyenRet
Antique AutomobilesMcLaren M7BGVic Elford1056Ret

Summary of F1 engine use[edit]

SeasonEngineTypeDisp.TeamsWinsNotes
1963Mk.IXI41.5Lotus0
  • The first 'Ford' Formula One engine entry
1964Mk.XVII41.5Cooper0
  • Entered as 'Ford 109E'
1965Mk.XVII41.5Lotus, Cooper0
  • Entered as 'Ford 109E'
1967FVAI41.6Matra4
DFVV83.0Lotus
1968DFVV83.0Lotus, McLaren, Matra11
1969DFVV83.0Matra, Brabham, Lotus, McLaren11
1970DFVV83.0Lotus, March, McLaren, Brabham, Surtees, Tyrrell, Bellasi, De Tomaso8
1971DFVV83.0Tyrrell, March, Lotus, McLaren, Surtees, Brabham, Bellasi7
1972DFVV83.0McLaren, Lotus, Tyrrell, Surtees, March, Brabham, Frank Williams Racing Cars, Connew10
1973DFVV83.0Lotus, Tyrrell, McLaren, Brabham, March, Shadow, Surtees, Iso Marlboro, Ensign15
1974DFVV83.0McLaren, Tyrrell, Lotus, Brabham, Hesketh, Shadow, March, Frank Williams Racing Cars, Surtees, Lola, Token, Trojan, Penske, Parnelli, Lyncar, Ensign, Amon, Maki12
1975DFVV83.0McLaren, Brabham, Hesketh, Tyrrell, Shadow, March, Lotus, Williams, Parnelli, Hill, Penske, Ensign, Fittipaldi, Lyncar, Lola, Maki, Surtees8
1976DFVV83.0Tyrrell, McLaren, Lotus, Penske, March, Shadow, Surtees, Fittipaldi, Ensign, Parnelli, Wolf-Williams, Williams, Kojima, Hesketh, Maki, Brabham, Boro10
1977DFVV83.0Lotus, McLaren, Wolf, Tyrrell, Shadow, Fittipaldi, Ensign, Surtees, Penske, Williams, Boro, LEC, McGuire, Kojima, Hesketh, March12
1978DFVV83.0Lotus, Tyrrell, Wolf, Fittipaldi, McLaren, Arrows, Williams, Shadow, Surtees, Ensign, Martini, Hesketh, ATS, Theodore, Merzario9
1979DFVV83.0Williams, Ligier, Lotus, Tyrrell, McLaren, Arrows, Shadow, ATS, Fittipaldi, Kauhsen, Wolf, Brabham, Ensign, Rebaque, Merzario8
  • Cosworth-powered teams took 2nd, 3rd and 4th place in Constructors Championship
1980DFVV83.0Williams, Ligier, Brabham, Lotus, Tyrrell, McLaren, Arrows, Fittipaldi, Shadow, ATS, Osella, Ensign11
1981DFVV83.0Williams, Brabham, McLaren, Lotus, Tyrrell, Arrows, Ensign, Theodore, ATS, Fittipaldi, Osella, March8
1982DFVV83.0McLaren, Williams, Lotus, Tyrrell, Brabham, Arrows, ATS, Osella, Fittipaldi, March, Theodore, Ensign8
1983DFYV83.0Williams, McLaren, Tyrrell3
DFVV83.0Williams, McLaren, Tyrrell, Arrows, Lotus, Theodore, Osella, RAM, Ligier
1984DFYV83.0Tyrrell0
DFVV83.0Arrows, Spirit
1985DFYV83.0Tyrrell0
DFVV83.0Minardi
1986GBAV6-T1.5Haas Lola0
  • First Cosworth engine to use a turbo in F1, and first non-V8 V engine
1987GBAV6-T1.5Benetton0
  • Benetton reach 1000+ bhp with qualifying spec turbo engine
DFZV83.5Tyrrell, Larrousse, AGS, March, Coloni
1988DFRV83.5Benetton0
DFZV83.5Tyrrell, Rial, Minardi, Coloni, Larrousse, AGS, EuroBrun, Dallara
DFVV83.0Dallara
1989HBV83.5Benetton1
DFRV83.5Tyrrell, Arrows, Dallara, Minardi, Onyx, Ligier, Rial, AGS, Osella, Coloni
1990HBV83.5Benetton2
DFRV83.5Tyrrell, Arrows, Monteverdi, Ligier, Osella, Dallara, Coloni, AGS, Minardi
1991HBV83.5Benetton, Jordan1
  • DFV-series' last F1 season (DFR)
DFRV83.5Lola, Fondmetal, Coloni, AGS, Footwork
1992HBV83.5Benetton, Lotus, Fondmetal1
1993HBV83.5McLaren, Benetton, Lotus, Minardi6
1994EC Zetec-RV83.5Benetton8
HBV83.5Footwork, Minardi, Larrousse, Simtek
1995ECA Zetec-RV83.0Sauber0
  • ECA engine is a developed 3-litre version of the 3.5litre EC Zetec-R V8.
EDV83.0Minardi, Forti, Simtek, Pacific
1996JD Zetec-RV103.0Sauber0
  • First Cosworth V10 design
ECA Zetec-RV83.0Forti
EDV83.0Minardi
1997VJ Zetec-RV103.0Stewart0
ECA Zetec-RV83.0Lola
EDV83.0Tyrrell
1998VJ Zetec-RV103.0Stewart0
JD Zetec-RV103.0Tyrrell, Minardi
1999CR-1V103.0Stewart1
VJ Zetec-RV103.0Minardi
2000CR-2V103.0Jaguar0
  • Ford use Cosworth for the engines' name, from this year
  • Minardi engines rebadged as Fondmetal
VJ Zetec-RV103.0Minardi
2001CR-3V103.0Jaguar0
VJ Zetec-RV103.0Minardi
2002CR-4V103.0Jaguar0
CR-3V103.0Arrows
2003CR-5V103.0Jaguar1
RS1V103.0Jordan
CR-3V103.0Minardi
2004CR-6V103.0Jaguar0
  • Jordan engines use Ford name
RS2V103.0Jordan
CR-3LV103.0Minardi
2005TJ2005V103.0Red Bull, Minardi0
  • Minardi used the CK2004 (CR-3L) engine during the first 3 races of the season where the team used the old PS04B chassis.
2006CA2006V82.4Williams0
  • Toro Rosso V10s rev-limited
TJ2005V103.0Toro Rosso
20072009: Cosworth did not supply any engines in Formula One.
2010CA2010V82.4Williams, Lotus, HRT, Virgin0
2011CA2011V82.4Williams, HRT, Virgin0
2012CA2012V82.4HRT, Marussia0
2013CA2013V82.4Marussia0

See also[edit]

References[edit]

  1. ^ "Cosworth's Hal Reisiger". Autoweek 64 (7): 78. 17–31 March 2014. 
  2. ^ a b c d e f g "Heritage & History". Cosworth. Retrieved 2010-07-12. 
  3. ^ "Mahle Company History 1980–1999". mahle-powertrain.com. Mahle. Retrieved 2010-08-08. 
  4. ^ "MAHLE | 2000". Mahle-powertrain.com. 2005-07-01. Retrieved 2010-07-12. 
  5. ^ Mk.XVI was used by Bob Gerard Racing on Cooper T71/73 for John Taylor at 1964 British Grand Prix, but was entered as "Ford 109E engine" for reasons unknown
  6. ^ Mason, Chris (1990). Uphill Racers. Bookmarque Publishing. p. 448. ISBN 978-1-870519-08-3. 
  7. ^ Moreton, Mike, Rallye Sport Fords - the inside story, ISBN 978-1-84584-115-7 
  8. ^ "Cosworth expects engines to be strong - F1 | ITV Sport". Itv-f1.com. 2009-07-20. Retrieved 2010-07-12. 
  9. ^ "autosport.com". autosport.com. 2010-01-12. Retrieved 2010-07-12. 
  10. ^ 1975 Chevrolet Cosworth Vega Shop manual supplement-engine description
  11. ^ Collectable Automobile-April 2000. Chevrolet's Vega
  12. ^ a b c d "Flying the Flag", Autocar 7 August 1985, pp32-33
  13. ^ "The Cosworth Story". Cosworthvega.com. Retrieved 2010-07-12. 

Further reading[edit]

External links[edit]