Software

From Wikipedia, the free encyclopedia - View original article

 
  (Redirected from Computer software)
Jump to: navigation, search

Computer software, or simply software, refers to the non-tangible components of computers, known as computer programs. The term is used to contrast with computer hardware, which denotes the physical tangible components of computers. It may be used as an adjective to mean "non-tangible component" or as a group noun to mean "all computer programs when taken as a whole". Computer hardware and software require each other and neither can be realistically used without the other.

The term is generic, in that it refers to all computer programs regardless of their architecture; for example, executable files, libraries and scripts are computer software. Yet, it shares their mutual properties: software consists of clearly-defined instructions that upon execution, instructs hardware to perform the tasks for which it is designed. Software is stored in computer memory and cannot be touched, just as a 3D model shown in an illustration cannot be touched.[1]

At the lowest level, executable code consists of machine language instructions specific to an individual processor – typically a central processing unit (CPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location inside the computer – an effect that is not directly observable to the user. An instruction may also (indirectly) cause something to appear on a display of the computer system – a state change which should be visible to the user. The processor carries out the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or interrupted.

Software is usually written in high-level programming languages that are easier and more efficient for humans to use (closer to natural language) than machine language.[2] High-level languages are compiled or interpreted into machine language object code. Software may also be written in a low-level assembly language, essentially, a vaguely mnemonic representation of a machine language using a natural language alphabet. Assembly language is converted into object code via an assembler.

History[edit]

Types of software[edit]

UserApplicationOperating SystemHardware
A diagram showing how the operating system software and application software are layered on a typical desktop computer. The arrows indicate information flow.

On virtually all computer platforms, software can be grouped into a few broad categories.

Purpose, or domain of use[edit]

Based on the goal, computer software can be divided into:

Nature, or domain of execution[edit]

Programming tools[edit]

Programming tools are software in the form of programs or applications that software developers (also known as programmers, coders, hackers or software engineers) use to create, debug, maintain (i.e. improve or fix), or otherwise support software. Software is written in one or more programming languages; there are many programming languages in existence, and each has at least one implementation, each of which consists of its own set of programming tools. These tools may be relatively self-contained programs such as compilers, debuggers, interpreters, linkers, and text editors, that can be combined together to accomplish a task, much as one might use multiple hand tools to fix a physical object, or they may be an integrated development environment (IDE), which combines much or all of the functionality of such self-contained tools. An IDE may do this either by invoking the relevant individual tools on behalf of the programmer, or by reimplementing their functionality in a new way. Almost all programming language implementations (a notable exception being Smalltalk) provide the option of using individual tools rather than an IDE, because some programmers prefer not to use IDEs for various reasons, and IDEs usually take longer to be developed to an "acceptable" standard than individual tools - indeed, initially, new programming languages (which are created every year) would not typically have IDEs available for them.

Software topics[edit]

Architecture[edit]

Users often see things differently than programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.

Execution[edit]

Computer software has to be "loaded" into the computer's storage (such as the hard drive or memory). Once the software has loaded, the computer is able to execute the software. This involves passing instructions from the application software, through the system software, to the hardware which ultimately receives the instruction as machine code. Each instruction causes the computer to carry out an operation – moving data, carrying out a computation, or altering the control flow of instructions.

Data movement is typically from one place in memory to another. Sometimes it involves moving data between memory and registers which enable high-speed data access in the CPU. Moving data, especially large amounts of it, can be costly. So, this is sometimes avoided by using "pointers" to data instead. Computations include simple operations such as incrementing the value of a variable data element. More complex computations may involve many operations and data elements together.

Quality and reliability[edit]

Software quality is very important, especially for commercial and system software like Microsoft Office, Microsoft Windows and Linux. If software is faulty (buggy), it can delete a person's work, crash the computer and do other unexpected things. Faults and errors are called "bugs." Many bugs are discovered and eliminated (debugged) through software testing. However, software testing rarely – if ever – eliminates every bug; some programmers say that "every program has at least one more bug" (Lubarsky's Law). All major software companies, such as Microsoft, Novell and Sun Microsystems, have their own software testing departments with the specific goal of just testing. Software can be tested through unit testing, regression testing and other methods, which are done manually, or most commonly, automatically, since the amount of code to be tested can be quite large. For instance, NASA has extremely rigorous software testing procedures for many operating systems and communication functions. Many NASA based operations interact and identify each other through command programs called software. This enables many people who work at NASA to check and evaluate functional systems overall. Programs containing command software enable hardware engineering and system operations to function much easier together.

License[edit]

The software's license gives the user the right to use the software in the licensed environment. Some software comes with the license when purchased off the shelf, or an OEM license when bundled with hardware. Other software comes with a free software license, granting the recipient the rights to modify and redistribute the software. Software can also be in the form of freeware or shareware.

Patents[edit]

Software can be patented in some but not all countries; however, software patents can be controversial in the software industry with many people holding different views about it. The controversy over software patents is about specific algorithms or techniques that the software contains, which may not be duplicated by others and considered intellectual property and copyright infringement depending on the severity.

Design and implementation[edit]

A screenshot of a piece of computer software that implements the board game shogi with a graphical user interface

Design and implementation of software varies depending on the complexity of the software. For instance, design and creation of Microsoft Word software will take much more time than designing and developing Microsoft Notepad because of the difference in functionalities in each one.

Software is usually designed and created (coded/written/programmed) in integrated development environments (IDE) like Eclipse, Emacs and Microsoft Visual Studio that can simplify the process and compile the program. As noted in different section, software is usually created on top of existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans or Swing. Libraries (APIs) are categorized for different purposes. For instance, JavaBeans library is used for designing enterprise applications, Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word, and Windows Communication Foundation is used for designing web services. Underlying computer programming concepts like quicksort, hash table, array, and binary tree can be useful to creating software. When a program is designed, it relies on the API. For instance, if a user is designing a Microsoft Windows desktop application, he/she might use the .NET Windows Forms library to design the desktop application and call its APIs like Form1.Close() and Form1.Show()[6] to close or open the application and write the additional operations him/herself that it need to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Sun Microsystems, Novell, and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.

Computer software has special economic characteristics that make its design, creation, and distribution different from most other economic goods.[specify][7][8]

A person who creates software is called a programmer, software engineer or software developer, terms that all have a similar meaning.

Industry and organizations[edit]

A great variety of software companies and programmers in the world comprise a software industry. Software can be quite a profitable industry: Bill Gates, the founder of Microsoft was the richest person in the world in 2009 largely by selling the Microsoft Windows and Microsoft Office software products. The same goes for Larry Ellison, largely through his Oracle database software. Through time the software industry has become increasingly specialized.

Non-profit software organizations include the Free Software Foundation, GNU Project and Mozilla Foundation. Software standard organizations like the W3C, IETF develop software standards so that most software can interoperate through standards such as XML, HTML, HTTP or FTP.

Other well-known large software companies include Novell, SAP, Symantec, Adobe Systems, and Corel, while small companies often provide innovation.

See also[edit]


References[edit]

  1. ^ "'Software' from Collins Concise English Dictionary". Wordreference.com. Princeton, NJ: Princeton University. Retrieved 2007-08-19. 
  2. ^ "Compiler construction". 
  3. ^ "System Software". The University of Mississippi. 
  4. ^ "Embedded Software—Technologies and Trends". IEEE Computer Society. Retrieved May/June 2009. 
  5. ^ "Microcode". Princeton University. 
  6. ^ "MSDN Library". Retrieved 2010-06-14. 
  7. ^ v. Engelhardt, Sebastian (2008). "The Economic Properties of Software". Jena Economic Research Papers 2 (2008–045.). 
  8. ^ Kaminsky, Dan (1999). "Why Open Source Is The Optimum Economic Paradigm for Software". 

External links[edit]