Central venous pressure

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search

Central venous pressure

It is a good approximation of right atrial pressure,[1] which is a major determinant of right ventricular end diastolic volume. CVP has been, and often still is, used as a surrogate for preload, and changes in CVP in response to infusions of intravenous fluid have been used to predict volume-responsiveness (i.e. whether more fluid will improve cardiac output). However, there is increasing evidence that CVP, whether as an absolute value or in terms of changes in response to fluid, does not correlate with ventricular volume (i.e. preload) or volume-responsiveness, and so should not be used to guide intravenous fluid therapy.[2][3] Nevertheless, CVP monitoring is a useful tool to guide hemodynamic therapy. The cardiopulmonary baroreflex responds to an increase in CVP by decreasing total peripheral resistance while increasing HR and ventricular contractility in dogs.[4]


pressure range
(in mmHg)[5]
Central venous pressure3–8
Right ventricular pressuresystolic15–30
Pulmonary artery pressuresystolic15–30
Pulmonary vein/

Pulmonary capillary wedge pressure

Left ventricular pressuresystolic100–140

Normal CVP can be measured from two points of reference:

CVP can be measured by connecting the patient's central venous catheter to a special infusion set which is connected to a small diameter water column. If the water column is calibrated properly the height of the column indicates the CVP.

In most intensive care units, facilities are available to measure CVP continuously.

Normal values are 5-10 cmH20 [6]

Factors affecting CVP[edit]

Factors that increase CVP include:

Factors that decrease CVP include:

See also[edit]


  1. ^ "Central Venous Catheter Physiology". Retrieved 2009-02-27. 
  2. ^ Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S et al. (2004). "Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects". Crit Care Med 32 (3). 
  3. ^ Marik P, Baram M, Vahid B (July 2008). "Does Central Venous Pressure Predict Fluid Responsiveness?". Chest 134 (1). doi:10.1378/chest.08-1846. 
  4. ^ Sala-Mercado JA, Moslehpour M, Hammond RL, Ichinose M, Chen X, Evan S, O'Leary DS, Mukkamala R (June 2014). "Stimulation of the Cardiopulmonary Baroreflex Enhances Ventricular Contractility in Awake Dogs: A Mathematical Analysis Study". American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 307 (4): R455–R464. doi:10.1152/ajpregu.00510.2013. 
  5. ^ Table 30-1 in: Trudie A Goers; Washington University School of Medicine Department of Surgery; Klingensmith, Mary E; Li Ern Chen; Sean C Glasgow (2008). The Washington manual of surgery. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 0-7817-7447-0. 
  6. ^ Egan's Fundamentals of Respiratory Care 9th ed, p. 1140

External links[edit]