From Wikipedia, the free encyclopedia  View original article
In chaos theory, the butterfly effect is the sensitive dependence on initial conditions in which a small change in one state of a deterministic nonlinear system can result in large differences in a later state. The name of the effect, coined by Edward Lorenz, is derived from the metaphorical example of the details of a hurricane (exact time of formation, exact path taken) being influenced by minor perturbations such as the flapping of the wings of a distant butterfly several weeks earlier. Lorenz discovered the effect when he observed that runs of his weather model with initial condition data that was rounded in a seemingly inconsequential manner would fail to reproduce the results of runs with the unrounded initial condition data. A very small change in initial conditions had created a significantly different outcome.
The butterfly effect is exhibited by very simple systems. For example, the randomness of the outcomes of throwing dice depends on this characteristic to amplify small differences in initial conditions—the precise direction, thrust, and orientation of the throw—into significantly different dice paths and outcomes, which makes it virtually impossible to throw dice exactly the same way twice.
The butterfly effect is a common trope in fiction, especially in scenarios involving time travel. Additionally, works of fiction that involve points at which the storyline diverges during a seemingly minor event, resulting in a significantly different outcome than would have occurred without the divergence, are an example of the butterfly effect.
Chaos theory and the sensitive dependence on initial conditions were described in the literature in a particular case of the threebody problem by Henri Poincaré in 1890.^{[1]} He later proposed that such phenomena could be common, for example, in meteorology.^{[2]}
In 1898,^{[1]} Jacques Hadamard noted general divergence of trajectories in spaces of negative curvature. Pierre Duhem discussed the possible general significance of this in 1908.^{[1]} The idea that one butterfly could eventually have a farreaching ripple effect on subsequent historic events first appears in "A Sound of Thunder", a 1952 short story by Ray Bradbury about time travel (see Literature and print here).
In 1961, Lorenz was using a numerical computer model to rerun a weather prediction, when, as a shortcut on a number in the sequence, he entered the decimal 0.506 instead of entering the full 0.506127. The result was a completely different weather scenario.^{[3]} In 1963 Lorenz published a theoretical study of this effect in a wellknown paper called Deterministic Nonperiodic Flow.^{[4]} (As noted in the paper, the calculations were performed on a Royal McBee LGP30 computing machine.^{[5]}^{[6]}) Elsewhere he said that "One meteorologist remarked that if the theory were correct, one flap of a sea gull's wings would be enough to alter the course of the weather forever. The controversy has not yet been settled, but the most recent evidence seems to favor the sea gulls."^{[6]} Following suggestions from colleagues, in later speeches and papers Lorenz used the more poetic butterfly. According to Lorenz, when he failed to provide a title for a talk he was to present at the 139th meeting of the American Association for the Advancement of Science in 1972, Philip Merilees concocted Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? as a title.^{[citation needed]} Although a butterfly flapping its wings has remained constant in the expression of this concept, the location of the butterfly, the consequences, and the location of the consequences have varied widely.^{[7]}
The phrase refers to the idea that a butterfly's wings might create tiny changes in the atmosphere that may ultimately alter the path of a tornado or delay, accelerate or even prevent the occurrence of a tornado in another location. Note that the butterfly does not power or directly create the tornado. The Butterfly effect does not convey the notion  as is often misconstrued  that the flap of the butterfly's wings causes the tornado. The flap of the wings is a part of the initial conditions; one set of conditions leads to a tornado while the other set of conditions doesn't. The flapping wing represents a small change in the initial condition of the system, which causes a chain of events leading to largescale alterations of events (compare: domino effect). Had the butterfly not flapped its wings, the trajectory of the system might have been vastly different  it's possible that the set of conditions without the butterfly flapping its wings is the set that leads to a tornado.
The butterfly effect presents an obvious challenge to prediction, since initial conditions for a system such as the weather can never be known to complete accuracy. This problem motivated the development of ensemble forecasting, in which a number of forecasts are made from perturbed initial conditions.^{[8]}
Some scientists have since argued that the weather system is not as sensitive to initial condition as previously believed.^{[9]} David Orrell argues that the major contributor to weather forecast error is model error, with sensitivity to initial conditions playing a relatively small role.^{[10]}^{[11]} Stephen Wolfram also notes that the Lorenz equations are highly simplified and do not contain terms that represent viscous effects; he believes that these terms would tend to damp out small perturbations.^{[12]}
The butterfly effect in the Lorenz attractor  

time 0 ≤ t ≤ 30 (larger)  z coordinate (larger)  
These figures show two segments of the threedimensional evolution of two trajectories (one in blue, the other in yellow) for the same period of time in the Lorenz attractor starting at two initial points that differ by only 10^{−5} in the xcoordinate. Initially, the two trajectories seem coincident, as indicated by the small difference between the z coordinate of the blue and yellow trajectories, but for t > 23 the difference is as large as the value of the trajectory. The final position of the cones indicates that the two trajectories are no longer coincident at t = 30.  
A Java animation of the Lorenz attractor shows the continuous evolution. 
Recurrence, the approximate return of a system towards its initial conditions, together with sensitive dependence on initial conditions, are the two main ingredients for chaotic motion. They have the practical consequence of making complex systems, such as the weather, difficult to predict past a certain time range (approximately a week in the case of weather) since it is impossible to measure the starting atmospheric conditions completely accurately.
A dynamical system displays sensitive dependence on initial conditions if points arbitrarily close together separate over time at an exponential rate. The definition is not topological, but essentially metrical.
If M is the state space for the map , then displays sensitive dependence to initial conditions if for any x in M and any δ > 0, there are y in M, with distance d(. , .) such that and such that
for some positive parameter a. The definition does not require that all points from a neighborhood separate from the base point x, but it requires one positive Lyapunov exponent.
The simplest mathematical framework exhibiting sensitive dependence on initial conditions is provided by a particular parametrization of the logistic map:
which, unlike most chaotic maps, has a closedform solution:
where the initial condition parameter is given by . For rational , after a finite number of iterations maps into a periodic sequence. But almost all are irrational, and, for irrational , never repeats itself – it is nonperiodic. This solution equation clearly demonstrates the two key features of chaos – stretching and folding: the factor 2^{n} shows the exponential growth of stretching, which results in sensitive dependence on initial conditions (the butterfly effect), while the squared sine function keeps folded within the range [0, 1].
The butterfly effect is most familiar in terms of weather; it can easily be demonstrated in standard weather prediction models, for example.^{[13]}
The potential for sensitive dependence on initial conditions (the butterfly effect) has been studied in a number of cases in semiclassical and quantum physics including atoms in strong fields and the anisotropic Kepler problem.^{[14]}^{[15]} Some authors have argued that extreme (exponential) dependence on initial conditions is not expected in pure quantum treatments;^{[16]}^{[17]} however, the sensitive dependence on initial conditions demonstrated in classical motion is included in the semiclassical treatments developed by Martin Gutzwiller^{[18]} and Delos and coworkers.^{[19]}
Other authors suggest that the butterfly effect can be observed in quantum systems. Karkuszewski et al. consider the time evolution of quantum systems which have slightly different Hamiltonians. They investigate the level of sensitivity of quantum systems to small changes in their given Hamiltonians.^{[20]} Poulin et al. presented a quantum algorithm to measure fidelity decay, which "measures the rate at which identical initial states diverge when subjected to slightly different dynamics". They consider fidelity decay to be "the closest quantum analog to the (purely classical) butterfly effect".^{[21]} Whereas the classical butterfly effect considers the effect of a small change in the position and/or velocity of an object in a given Hamiltonian system, the quantum butterfly effect considers the effect of a small change in the Hamiltonian system with a given initial position and velocity.^{[22]}^{[23]} This quantum butterfly effect has been demonstrated experimentally.^{[24]} Quantum and semiclassical treatments of system sensitivity to initial conditions are known as quantum chaos.^{[16]}^{[22]}
Look up butterfly effect in Wiktionary, the free dictionary. 

