British thermal unit

From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search
"BTU" redirects here. For other uses, see BTU (disambiguation).

The British thermal unit (BTU or Btu) is a traditional unit of energy equal to about 1055 joules. It is the amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. In science, the joule, the SI unit of energy, has largely replaced the BTU.

The BTU is most often used as a measure of power (as BTU/h) in the power, steam generation, heating, and air conditioning industries, and also as a measure of agricultural energy production (BTU/kg).[verification needed] It is still used in metric English-speaking countries (such as Canada), and remains the standard unit of classification for air conditioning units manufactured and sold in many non-English-speaking metric countries.[1] In North America, the heat value (energy content) of fuels is expressed in BTUs.


A BTU is the amount of heat required to raise the temperature of 1 pound (0.454 kg) of liquid water by 1 °F (0.56 °C) at a constant pressure of one atmosphere.[2][3] As with the calorie, several definitions of the BTU exist, because the temperature response of water to heat energy is non-linear. This means that the change in temperature of a water mass caused by adding a certain amount of heat to it will be a function of the water's initial temperature. Definitions of the BTU based on different water temperatures can therefore vary by up to 0.5%. A BTU can be approximated as the heat produced by burning a single wooden match[4] or as the amount of energy it takes to lift a one-pound weight 778 feet (237 m).[5]

Nominal temperatureBTU equivalent in joulesNotes
39 °F (3.9 °C)≈ 1059.67Uses the calorie value of water at its maximum density (4 °C or 39.2 °F)
Mean≈ 1055.87Uses a calorie averaged over water temperatures 0 to 100 °C (32.0 to 212.0 °F)
IT≡ 1055.05585262The most widespread BTU uses the International Steam Table (IT) calorie, which was defined by the Fifth International Conference on the Properties of Steam (London, July 1956) to be exactly 4.1868 J
ISO≡ 1055.056International standard ISO 31-4 on Quantities and units—Part 4: Heat,[6] Appendix A. This value uses the IT calorie and is rounded to a realistic accuracy
59 °F (15.0 °C)≡ 1054.804Chiefly American. Uses the 15 °C calorie, itself now defined as exactly 4.1855 J (Comité international 1950; PV, 1950, 22, 79–80)
60 °F (15.6 °C)≈ 1054.68Chiefly Canadian
63 °F (17.2 °C)≈ 1054.6
Thermochemical ("Th"[7])≡ 1054.35026444Uses the "thermochemical calorie" of exactly 4.184 J

The unit MBtu or mBtu was defined as one thousand BTU, presumably from the Roman numeral system where "M" or "m" stands for one thousand (1,000). This notation is easily confused with the SI mega- (M) prefix, which denotes multiplication by a factor of one million (×106), or with the SI milli- (m) prefix, which denotes division by a factor of one thousand (×10−3). To avoid confusion, many companies and engineers use the notation MMBtu or mmBtu to represent one million BTU (although, confusingly, MM in Roman numerals would traditionally represent 2,000) and in many contexts this form of notation is deprecated and discouraged in favour of the more modern SI prefixes. Alternatively, the term therm may be used to represent 100,000 (or 105) BTU, and quad for 1015 BTU. Some companies also use BtuE6 in order to reduce confusion between 103 BTU and 106 BTU.[8]


One BTU is approximately:

For natural gas[edit]

As a unit of power[edit]

When used as a unit of power for heating and cooling systems, BTU per hour (BTU/h) is the correct unit, though this is often abbreviated to just "BTU".[verification needed].

Associated units[edit]

The BTU should not be confused with the Board of Trade Unit (B.O.T.U.), which is a much larger quantity of energy (1 kW·h or 3,412 BTU).

The BTU is often used to express the conversion-efficiency of heat into electrical energy in power plants. Figures are quoted in terms of the quantity of heat in BTU required to generate 1 kW·h of electrical energy. A typical coal-fired power plant works at 10,500 BTU/kW·h, an efficiency of 32–33%.[13]

See also[edit]


  1. ^ "Metrication Problems in the Construction Codes and Standards Sector". Retrieved 5 April 2014. 
  2. ^ "What is British thermal unit (Btu)? definition and meaning". Retrieved 2011-11-11. 
  3. ^ "BTU Calculator". Retrieved 5 April 2014. 
  4. ^ Energy and the Environment. Ristinen, Robert A. c. 2006, pg 13
  5. ^ Energy and the Environment. Ristinen, Robert A. c. 2006, pg 14
  6. ^ International standard ISO 31-4:1992 Quantities and units—Part 4: Heat
  7. ^ [1]
  8. ^ EIA (2012-09-17). "What are Mcf, BTU, and therms? How do I convert prices in Mcf to BTUs and therms?". US Government. 
  9. ^ "Energy Measurements". Retrieved 5 April 2014. 
  10. ^ 2009 ASHRAE Handbook – Fundamentals (I-P Edition). (pp: 38.2). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
  11. ^ "The GB gas wholesale market". OFGEM. Retrieved Jan 13, 2013. "The wholesale gas market in Britain has one price for gas irrespective of where the gas comes from. This is called the National Balancing Point (NBP) price of gas and is usually quoted in price per therm of gas." 
  12. ^ Husher, John Durbin. Crises of the 21st Century: Start Drilling-The Year 2020 Is Coming Fast, iUniverse, 2009. Page 376.
  13. ^ Electric Generation Efficiency, NPC Global Oil & Gas Study, 18 July 2007

External links[edit]