From Wikipedia, the free encyclopedia - View original article

Jump to: navigation, search
Insulin crystals

Biotechnology is the use of living systems and organisms to develop or make useful products, or "any technological application that uses biological systems, living organisms or derivatives thereof, to make or modify products or processes for specific use" (UN Convention on Biological Diversity, Art. 2).[1] Depending on the tools and applications, it often overlaps with the (related) fields of bioengineering and biomedical engineering.

For thousands of years, humankind has used biotechnology in agriculture, food production, and medicine.[2] The term itself is largely believed to have been coined in 1919 by Hungarian engineer Károly Ereky. In the late 20th and early 21st century, biotechnology has expanded to include new and diverse sciences such as genomics, recombinant gene technologies, applied immunology, and development of pharmaceutical therapies and diagnostic tests.[3]


The wide concept of "biotech" or "biotechnology: encompasses a wide range of procedures (and history) for modifying living organisms according to human purposes, going back to domestication of animals, cultivation of plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms such as pharmaceuticals, crops, and livestock.[4] In other words, biotechnology can be defined as the mere application of technical advances in life science to develop commercial products. Biotechnology also writes on the pure biological sciences (animal cell culture, biochemistry, cell biology, embryology, genetics, microbiology, and molecular biology). In many instances, it is also dependent on knowledge and methods from outside the sphere of biology including:

Conversely, modern biological sciences (including even concepts such as molecular ecology) are intimately entwined and heavily dependent on the methods developed through biotechnology and what is commonly thought of as the life sciences industry. Biotechnology is the research and development in the laboratory using bioinformatics for exploration, extraction, exploitation and production from any living organisms and any source of biomass by means of biochemical engineering where high value-added products could be planned (reproduced by biosynthesis, for example), forecasted, formulated, developed, manufactured and marketed for the purpose of sustainable operations (for the return from bottomless initial investment on R & D) and gaining durable patents rights (for exclusives rights for sales, and prior to this to receive national and international approval from the results on animal experiment and human experiment, especially on the pharmaceutical branch of biotechnology to prevent any undetected side-effects or safety concerns by using the products).[5][6][7]

By contrast, bioengineering is generally thought of as a related field that more heavily emphasizes higher systems approaches (not necessarily the altering or using of biological materials directly) for interfacing with and utilizing living things. Bioengineering is the application of the principles of engineering and natural sciences to tissues, cells and molecules. This can be considered as the use knowledge from working with and manipulating biology to achieve a result that can improve functions in plants and animals.[8] Relatedly, biomedical engineering is an overlapping field that often draws upon and applies biotechnology (by various definitions), especially in certain sub-fields of biomedical and/or chemical engineering such as tissue engineering, biopharmaceutical engineering, and genetic engineering.


Brewing was an early application of biotechnology

Although not normally what first comes to mind, many forms of human-derived agriculture clearly fit the broad definition of "'using a biotechnological system to make products". Indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise.

Agriculture has been theorized to have become the dominant way of producing food since the Neolithic Revolution. Through early biotechnology, the earliest farmers selected and bred the best suited crops, having the highest yields, to produce enough food to support a growing population. As crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by-products could effectively fertilize, restore nitrogen, and control pests. Throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants — one of the first forms of biotechnology.

These processes also were included in early fermentation of beer.[9] These processes were introduced in early Mesopotamia, Egypt, China and India, and still use the same basic biological methods. In brewing, malted grains (containing enzymes) convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process, carbohydrates in the grains were broken down into alcohols such as ethanol. Later other cultures produced the process of lactic acid fermentation which allowed the fermentation and preservation of other forms of food, such as soy sauce. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.

For thousands of years, humans have used selective breeding to improve production of crops and livestock to use them for food. In selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. For example, this technique was used with corn to produce the largest and sweetest crops.[10]

In the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. In 1917, Chaim Weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum, to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.[11]

Biotechnology has also led to the development of antibiotics. In 1928, Alexander Fleming discovered the mold Penicillium. His work led to the purification of the antibiotic compound formed by the mold by Howard Florey, Ernst Boris Chain and Norman Heatley - to form what we today know as penicillin. In 1940, penicillin became available for medicinal use to treat bacterial infections in humans.[10]

The field of modern biotechnology is generally thought of as having been born in 1971 when Paul Berg's (Stanford) experiments in gene splicing had early success. Herbert W. Boyer (Univ. Calif. at San Francisco) and Stanley N. Cohen (Stanford) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. The commercial viability of a biotechnology industry was significantly expanded on June 16, 1980, when the United States Supreme Court ruled that a genetically modified microorganism could be patented in the case of Diamond v. Chakrabarty.[12] Indian-born Ananda Chakrabarty, working for General Electric, had modified a bacterium (of the Pseudomonas genus) capable of breaking down crude oil, which he proposed to use in treating oil spills. (Chakrabarty's work did not involve gene manipulation but rather the transfer of entire organelles between strains of the Pseudomonas bacterium.

Revenue in the industry is expected to grow by 12.9% in 2008. Another factor influencing the biotechnology sector's success is improved intellectual property rights legislation—and enforcement—worldwide, as well as strengthened demand for medical and pharmaceutical products to cope with an ageing, and ailing, U.S. population.[13]

Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeans—the main inputs into biofuels—by developing genetically modified seeds which are resistant to pests and drought. By boosting farm productivity, biotechnology plays a crucial role in ensuring that biofuel production targets are met.[14]


A rose plant that began as cells grown in a tissue culture

Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non food (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses.

For example, one application of biotechnology is the directed use of organisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, cleanup sites contaminated by industrial activities (bioremediation), and also to produce biological weapons.

A series of derived terms have been coined to identify several branches of biotechnology; for example:

The investment and economic output of all of these types of applied biotechnologies is termed as "bioeconomy".


In medicine, modern biotechnology finds applications in areas such as pharmaceutical drug discovery and production, pharmacogenomics, and genetic testing (or genetic screening).

DNA microarray chip – some can do as many as a million blood tests at once

Pharmacogenomics (a combination of pharmacology and genomics) is the technology that analyses how genetic makeup affects an individual's response to drugs.[16] It deals with the influence of genetic variation on drug response in patients by correlating gene expression or single-nucleotide polymorphisms with a drug's efficacy or toxicity.[17] By doing so, pharmacogenomics aims to develop rational means to optimize drug therapy, with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects.[18] Such approaches promise the advent of "personalized medicine"; in which drugs and drug combinations are optimized for each individual's unique genetic makeup.[19][20]

Computer-generated image of insulin hexamers highlighting the threefold symmetry, the zinc ions holding it together, and the histidine residues involved in zinc binding.

Biotechnology has contributed to the discovery and manufacturing of traditional small molecule pharmaceutical drugs as well as drugs that are the product of biotechnology - biopharmaceutics. Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle and/or pigs). The resulting genetically engineered bacterium enabled the production of vast quantities of synthetic human insulin at relatively low cost.[21][22] Biotechnology has also enabled emerging therapeutics like gene therapy. The application of biotechnology to basic science (for example through the Human Genome Project) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well.[22]

Genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's parentage (genetic mother and father) or in general a person's ancestry. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. Genetic testing identifies changes in chromosomes, genes, or proteins.[23] Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. As of 2011 several hundred genetic tests were in use.[24][25] Since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling.


Genetically modified crops ("GM crops", or "biotech crops") are plants used in agriculture, the DNA of which has been modified using genetic engineering techniques. In most cases the aim is to introduce a new trait to the plant which does not occur naturally in the species.

Examples in food crops include resistance to certain pests,[26] diseases,[27] stressful environmental conditions,[28] resistance to chemical treatments (e.g. resistance to a herbicide[29]), reduction of spoilage,[30] or improving the nutrient profile of the crop.[31] Examples in non-food crops include production of pharmaceutical agents,[32] biofuels,[33] and other industrially useful goods,[34] as well as for bioremediation.[35][36]

Farmers have widely adopted GM technology. Between 1996 and 2011, the total surface area of land cultivated with GM crops had increased by a factor of 94, from 17,000 square kilometers (4,200,000 acres) to 1,600,000 km2 (395 million acres).[37] 10% of the world's crop lands were planted with GM crops in 2010.[37] As of 2011, 11 different transgenic crops were grown commercially on 395 million acres (160 million hectares) in 29 countries such as the USA, Brazil, Argentina, India, Canada, China, Paraguay, Pakistan, South Africa, Uruguay, Bolivia, Australia, Philippines, Myanmar, Burkina Faso, Mexico and Spain.[37]

Genetically modified foods are foods produced from organisms that have had specific changes introduced into their DNA using the methods of genetic engineering. These techniques have allowed for the introduction of new crop traits as well as a far greater control over a food's genetic structure than previously afforded by methods such as selective breeding and mutation breeding.[38] Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its Flavr Savr delayed ripening tomato.[39] To date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. These have been engineered for resistance to pathogens and herbicides and better nutrient profiles. GM livestock have also been experimentally developed, although as of November 2013 none are currently on the market.[40]

There is broad scientific consensus that food on the market derived from GM crops poses no greater risk to human health than conventional food.[41][42][43][44][45] GM crops also provide a number of ecological benefits, if not used in excess.[46] However, opponents have objected to GM crops per se on several grounds, including environmental concerns, whether food produced from GM crops is safe, whether GM crops are needed to address the world's food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law.

Industrial biotechnology[edit]

An industrial biotechnology plant for the production of modified wheat starch and gluten

Industrial biotechnology (known mainly in Europe as white biotechnology) is the application of biotechnology for industrial purposes, including industrial fermentation. It includes the practice of using cells such as micro-organisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels.[47] In doing so, biotechnology uses renewable raw materials and may contribute to lowering greenhouse gas emissions and moving away from a petrochemical-based economy.[48]


The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of genetically modified organisms (GMO), including genetically modified crops and genetically modified fish. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the USA and Europe.[49] Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety.[50] The European Union differentiates between approval for cultivation within the EU and approval for import and processing. While only a few GMOs have been approved for cultivation in the EU a number of GMOs have been approved for import and processing. [51] The cultivation of GMOs has triggered a debate about coexistence of GM and nonGM crops. Depending on the coexistence regulations incentives for cultivation of GM crops differ.[52]


In 1988, after prompting from the United States Congress, the National Institute of General Medical Sciences (National Institutes of Health) (NIGMS) instituted a funding mechanism for biotechnology training. Universities nationwide compete for these funds to establish Biotechnology Training Programs (BTPs). Each successful application is generally funded for five years then must be competitively renewed. Graduate students in turn compete for acceptance into a BTP; if accepted, then stipend, tuition and health insurance support is provided for two or three years during the course of their Ph.D. thesis work. Nineteen institutions offer NIGMS supported BTPs.[53] Biotechnology training is also offered at the undergraduate level and in community colleges.

See also[edit]

References and notes[edit]

  1. ^ Text of the CBD. Retrieved on 2013-03-20.
  2. ^ "Incorporating Biotechnology into the Classroom What is Biotechnology?", from the curricula of the 'Incorporating Biotechnology into the High School Classroom through Arizona State University's BioREACH PROGRAM', accessed on October 16, 2012). Retrieved on 2013-03-20.
  3. ^ ''Incorporating Biotechnology into the Classroom – What is Biotechnology?'', from Incorporating Biotechnology into the High School Classroom through Arizona State University's BioREACH PROGRAM, Arizona State University, Microbiology Department, retrieved October 16, 2012. Retrieved on 2013-03-20.
  4. ^ Biotechnology. Retrieved on 2013-03-20.
  5. ^ What is biotechnology?. Europabio. Retrieved on 2013-03-20.
  7. ^ Biotechnology policies – Organisation for Economic Co-operation and Development. Retrieved on 2013-03-20.
  8. ^ What Is Bioengineering?. Retrieved on 2013-03-20.
  9. ^ See Arnold, John P. (2005) [1911]. Origin and History of Beer and Brewing: From Prehistoric Times to the Beginning of Brewing Science and Technology. Cleveland, Ohio: BeerBooks. p. 34. ISBN 978-0-9662084-1-2. OCLC 71834130.
  10. ^ a b Thieman, W.J.; Palladino, M.A. (2008). Introduction to Biotechnology. Pearson/Benjamin Cummings. ISBN 0-321-49145-9. 
  11. ^ Springham, D.; Springham, G.; Moses, V.; Cape, R.E. (24 August 1999). Biotechnology: The Science and the Business. CRC Press. p. 1. ISBN 978-90-5702-407-8. 
  12. ^ "Diamond v. Chakrabarty, 447 U.S. 303 (1980). No. 79-139." United States Supreme Court. June 16, 1980. Retrieved on May 4, 2007.
  13. ^ VoIP Providers And Corn Farmers Can Expect To Have Bumper Years In 2008 And Beyond, According To The Latest Research Released By Business Information Analysts At IBISWorld. Los Angeles (March 19, 2008)
  14. ^ The Recession List — Top 10 Industries to Fly and Fl... (ith anincreasing share accounted for by ...),
  15. ^ Gerstein, M. "Bioinformatics Introduction." Yale University. Retrieved on May 8, 2007.
  16. ^ Ermak G., Modern Science & Future Medicine (second edition), 164 p., 2013
  17. ^ Wang L (2010). "Pharmacogenomics: a systems approach". Wiley Interdiscip Rev Syst Biol Med 2 (1): 3–22. doi:10.1002/wsbm.42. PMID 20836007. 
  18. ^ Becquemont L (June 2009). "Pharmacogenomics of adverse drug reactions: practical applications and perspectives". Pharmacogenomics 10 (6): 961–9. doi:10.2217/pgs.09.37. PMID 19530963. 
  19. ^ "Guidance for Industry Pharmacogenomic Data Submissions" (PDF). U.S. Food and Drug Administration. March 2005. Retrieved 2008-08-27. 
  20. ^ Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP (August 2010). "Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice". Pharmacogenomics 11 (8): 1149–67. doi:10.2217/pgs.10.97. PMID 20712531. 
  21. ^ Bains, W. (1987). Genetic Engineering For Almost Everybody: What Does It Do? What Will It Do?. Penguin. p. 99. ISBN 0-14-013501-4. 
  22. ^ a b U.S. Department of State International Information Programs, "Frequently Asked Questions About Biotechnology", USIS Online; available from, accessed 13 September 2007. Cf. Feldbaum, C. (February 2002). "Some History Should Be Repeated". Science 295 (5557): 975. doi:10.1126/science.1069614. PMID 11834802. 
  23. ^ "What is genetic testing? - Genetics Home Reference". 2011-05-30. Retrieved 2011-06-07. 
  24. ^ "Genetic Testing: MedlinePlus". Retrieved 2011-06-07. 
  25. ^ "Definitions of Genetic Testing". Definitions of Genetic Testing (Jorge Sequeiros and Bárbara Guimarães). EuroGentest Network of Excellence Project. 2008-09-11. Retrieved 2008-08-10. [dead link]
  26. ^ Genetically Altered Potato Ok'd For Crops Lawrence Journal-World – 6 May 1995
  27. ^ National Academy of Sciences (2001). Transgenic Plants and World Agriculture. Washington: National Academy Press. 
  28. ^ Paarlburg, Robert Drought Tolerant GMO Maize in Africa, Anticipating Regulatory Hurdles International Life Sciences Institute, January 2011. Retrieved 25 April 2011
  29. ^ Carpenter J. & Gianessi L. (1999). Herbicide tolerant soybeans: Why growers are adopting Roundup Ready varieties. AgBioForum, 2(2), 65-72.
  30. ^ Haroldsen, Victor M.; Paulino, Gabriel; Chi-ham, Cecilia; Bennett, Alan B. (2012). "Research and adoption of biotechnology strategies could improve California fruit and nut crops". California Agriculture 66 (2): 62–69. doi:10.3733/ca.v066n02p62. 
  31. ^ About Golden Rice. Retrieved on 2013-03-20.
  32. ^ Gali Weinreb and Koby Yeshayahou for Globes May 2, 2012. FDA approves Protalix Gaucher treatment
  33. ^ Carrington, Damien (19 January 2012) GM microbe breakthrough paves way for large-scale seaweed farming for biofuels The Guardian. Retrieved 12 March 2012
  34. ^ van Beilen, Jan B.; Yves Poirier (May 2008). "Harnessing plant biomass for biofuels and biomaterials:Production of renewable polymers from crop plants". The Plant Journal 54 (4): 684–701. doi:10.1111/j.1365-313X.2008.03431.x. PMID 18476872. 
  35. ^ Strange, Amy (20 September 2011) Scientists engineer plants to eat toxic pollution The Irish Times. Retrieved 20 September 2011
  36. ^ Diaz E (editor). (2008). Microbial Biodegradation: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 1-904455-17-4. 
  37. ^ a b c James, C (2011). "ISAAA Brief 43, Global Status of Commercialized Biotech/GM Crops: 2011". ISAAA Briefs. Ithaca, New York: International Service for the Acquisition of Agri-biotech Applications (ISAAA). Retrieved 2012-06-02. 
  38. ^ GM Science Review First Report, Prepared by the UK GM Science Review panel (July 2003). Chairman Professor Sir David King, Chief Scientific Advisor to the UK Government, P 9
  39. ^ James, Clive (1996). "Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995". The International Service for the Acquisition of Agri-biotech Applications. Retrieved 17 July 2010. 
  40. ^ "Consumer Q&A". 2009-03-06. Retrieved 2012-12-29. 
  41. ^ American Association for the Advancement of Science (AAAS), Board of Directors (2012). Legally Mandating GM Food Labels Could Mislead and Falsely Alarm Consumers
  42. ^ A decade of EU-funded GMO research (2001-2010) (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Union. 2010. doi:10.2777/97784. ISBN 978-92-79-16344-9. ""The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research, and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." (p. 16)" 
  43. ^ Ronald, Pamela (2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics 188 (1): 11–20. doi:10.1534/genetics.111.128553. PMC 3120150. PMID 21546547. 
  44. ^ American Medical Association (2012). Report 2 of the Council on Science and Public Health: Labeling of Bioengineered Foods "Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature." (first page)
  45. ^ FAO, 2004. State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Food and Agriculture Organization of the United Nations, Rome. "Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants - mainly maize, soybean and oilseed rape - without any observed adverse effects (ICSU)."
  46. ^ Andrew Pollack for the New York Times. April 13, 2010 Study Says Overuse Threatens Gains From Modified Crops
  47. ^ Industrial Biotechnology and Biomass Utilisation
  48. ^ Industrial biotechnology, A powerful, innovative technology to mitigate climate change
  49. ^ Gaskell, G.; Bauer, M. W.; Durant, J.; Allum, N. C. (1999). "Worlds Apart? The Reception of Genetically Modified Foods in Europe and the U.S". Science 285 (5426): 384–387. doi:10.1126/science.285.5426.384. PMID 10411496.  edit
  50. ^ PotatoPro
  51. ^ Wesseler, J. and N. Kalaitzandonakes (2011): Present and Future EU GMO policy. In Arie Oskam, Gerrit Meesters and Huib Silvis (eds.), EU Policy for Agriculture, Food and Rural Areas. Second Edition, pp. 23–323 – 23-332. Wageningen: Wageningen Academic Publishers
  52. ^ Beckmann, V., C. Soregaroli, J. Wesseler (2011): Coexistence of genetically modified (GM) and non-modified (non GM) crops: Are the two main property rights regimes equivalent with respect to the coexistence value? In "Genetically modified food and global welfare" edited by Colin Carter, GianCarlo Moschini and Ian Sheldon, pp 201–224. Volume 10 in Frontiers of Economics and Globalization Series. Bingley, UK: Emerald Group Publishing
  53. ^ Nigms.Nih.Gov. Nigms.Nih.Gov. Retrieved on 2011-09-05.

Further reading[edit]

External links[edit]