Ball mill

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search
For the type of end mill, see Ball nose cutter.
Ball mill

A ball mill is a type of grinder used to grind materials into extremely fine powder for use in mineral dressing processes, paints, pyrotechnics, ceramics and selective laser sintering a 3D printing technology.

Principle[edit]

it works on the principle of impact,i.e.,size reduction is done by impact as the balls drop from near the top of the shell.

Construction[edit]

A ball mill consists of a hollow cylindrical shell rotating about its axis. The axis of the shell may be either horizontal or at a small angle to the horizontal. it is partially filled with balls.The grinding media is the balls which may be made of steel (chrome steel), stainless steel or rubber. The inner surface of the cylindrical shell is usually lined with an abrasion-resistant material such as manganese steel or rubber. less wear takes place in the rubber lined mills. The length of the mill is approximately equal to its diameter.

Working[edit]

In case of continuously operated ball mill, the material to be ground is fed from the left through 60° cone and the product is discharged through a 30° cone to the right. As the shell rotates, the balls are lifted up on the rising side of the shell and then they cascade down (or drop down on to the feed), from near the top of the shell. in doing so, the solid particles in between the balls are ground and reduced in size by impact.

Applications[edit]

The ball mill is used for grinding materials such as coal, pigments, and felspar for pottery. Grinding can be carried out either wet or dry but the former is carried at low speeds.

Description[edit]

Bench top ball mill
Laboratory scale ball mill
High-energy ball milling

A ball mill, a type of grinder, is a cylindrical device used in grinding (or mixing) materials like ores, chemicals, ceramic raw materials and paints. Ball mills rotate around a horizontal axis, partially filled with the material to be ground plus the grinding medium. Different materials are used as media, including ceramic balls, flint pebbles and stainless steel balls. An internal cascading effect reduces the material to a fine powder. Industrial ball mills can operate continuously, fed at one end and discharged at the other end. Large to medium-sized ball mills are mechanically rotated on their axis, but small ones normally consist of a cylindrical capped container that sits on two drive shafts (pulleys and belts are used to transmit rotary motion). A rock tumbler functions on the same principle. Ball mills are also used in pyrotechnics and the manufacture of black powder, but cannot be used in the preparation of some pyrotechnic mixtures such as flash powder because of their sensitivity to impact. High-quality ball mills are potentially expensive and can grind mixture particles to as small as 5 nm, enormously increasing surface area and reaction rates. The grinding works on the principle of critical speed. The critical speed can be understood as that speed after which the steel balls (which are responsible for the grinding of particles) start rotating along the direction of the cylindrical device; thus causing no further grinding.

Ball mills are used extensively in the mechanical alloying process[1] in which they are not only used for grinding but for cold welding as well, with the purpose of producing alloys from powders.[2]

Lead antimony grinding media with aluminium powder.
A ball mill inside the Mayflower Mill near Silverton, Colorado.

The ball mill is a key piece of equipment for grinding crushed materials, and it is widely used in production lines for powders such as cement, silicates, refractory material, fertilizer, glass ceramics, etc. as well as for ore dressing of both ferrous non-ferrous metals. The ball mill can grind various ores and other materials either wet or dry. There are two kinds of ball mill, grate type and overfall type due to different ways of discharging material. There are many types of grinding media suitable for use in a ball mill, each material having its own specific properties and advantages. Key properties of grinding media are size, density, hardness, and composition.

The grinding chamber can also be filled with an inert shield gas that does not react with the material being ground, to prevent oxidation or explosive reactions that could occur with ambient air inside the mill.

Advantages of the Ball Mill[edit]

Balling Milling boasts several advantages over other systems; the cost of installation, power required and grinding medium is low; it is suitable for both batch and continuous operation, similarly it is suitable for open as well as closed circuit grinding and is applicable for materials of all degrees of hardness.

Varieties[edit]

Aside from common ball mills there is a second type of ball mill called planetary ball mill. Planetary ball mills are smaller than common ball mills and mainly used in laboratories for grinding sample material down to very small sizes. A planetary ball mill consists of at least one grinding jar which is arranged eccentrically on a so-called sun wheel. The direction of movement of the sun wheel is opposite to that of the grinding jars (ratio: 1:-2 or 1:-1 or else). The grinding balls in the grinding jars are subjected to superimposed rotational movements, the so-called Coriolis forces. The difference in speeds between the balls and grinding jars produces an interaction between frictional and impact forces, which releases high dynamic energies. The interplay between these forces produces the high and very effective degree of size reduction of the planetary ball mill.

History[edit]

Devices for shaking materials along with hard balls might be old, but it was not until the industrial revolution and the invention of steam power that a machine could be built. It is reported to have been used for grinding flint for pottery in 1870.[3]

See also[edit]

References[edit]

  1. ^ M. I. Florez-Zamora et al. Comparative study of Al-Ni-Mo alloys obtained by mechanical alloying in different ball mills Rev. Adv. Mater. Sci. 18 (2008) 301
  2. ^ Mechanical Alloying Technology, Institute of Materials Processing
  3. ^ Lynch, A., Rowland C (2005). The history of grinding. SME. ISBN 0-87335-238-6. 

External links[edit]