Ankle brachial pressure index

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search

The Ankle Brachial Index (ABI or ABPI) is the ratio of the blood pressure in the lower legs to the blood pressure in the arms. Compared to the arm, lower blood pressure in the leg is an indication of blocked arteries (peripheral vascular disease or PVD). The ABI is calculated by dividing the systolic blood pressure at the ankle by the systolic blood pressures in the arm.[1]

Method[edit]

A Doppler ultrasound blood flow detector, commonly called Doppler Wand or Doppler probe, and a sphygmomanometer (blood pressure cuff) are usually needed. The blood pressure cuff is inflated proximal to the artery in question. Measured by the Doppler wand, the inflation continues until the pulse in the artery ceases. The blood pressure cuff is then slowly deflated. When the artery's pulse is re-detected through the Doppler probe the pressure in the cuff at that moment indicates the systolic pressure of that artery.

The higher systolic reading of the left and right arm brachial artery is generally used in the assessment. The pressures in each foot's posterior tibial artery and dorsalis pedis artery are measured with the higher of the two values used as the ABI for that leg.[2]

ABPI_{Leg} = \frac { P_{Leg} }{ P_{Arm} }
Where PLeg is the systolic blood pressure of dorsalis pedis or posterior tibial arteries
and PArm is the highest of the left and right arm brachial systolic blood pressure

The ABPI test is a popular tool for the non-invasive assessment of PVD. Studies have shown the sensitivity of ABPI is 90% with a corresponding 98% specificity for detecting hemodynamically significant (Serious) stenosis >50% in major leg arteries, defined by angiogram.[3]

However, ABPI has known issues:

When performed in an accredited lab, the ABI is a fast, accurate, and painless exam, however these issues have rendered ABI unpopular in primary care offices and symptomatic patients are often referred to specialty clinics[13] due to the perceived difficulties. Technology is emerging that allows for the oscillometric calculation of ABI, in which simultaneous readings of blood pressure at the levels of the ankle and upper arm are taken using specially calibrated oscillometric machines.

Interpretation of results[edit]

In a normal subject the pressure at the ankle is slightly higher than at the elbow (there is reflection of the pulse pressure from the vascular bed of the feet, whereas at the elbow the artery continues on some distance to the wrist).

The ABPI is the ratio of the highest ankle to brachial artery pressure. An ABPI between 0.9 and 1.2 considered normal (free from significant PAD), while a lesser than 0.9 indicates arterial disease. An ABPI value greater than 1.3 is also considered abnormal, and suggests calcification of the walls of the arteries and incompressible vessels, reflecting severe peripheral vascular disease.

Provided that there are no other significant conditions affecting the arteries of the leg, the following ABPI ratios can be used to predict the severity of PAD as well as assess the nature and best management of various types of leg ulcers:[2]

ABPI valueInterpretationActionNature of ulcers, if present
above 1.2Abnormal
Vessel hardening from PVD
Refer routinelyVenous ulcer
use full compression bandaging
1.0 - 1.2Normal rangeNone
0.9 - 1.0Acceptable
0.8 - 0.9Some arterial diseaseManage risk factors
0.5 - 0.8Moderate arterial diseaseRoutine specialist referralMixed ulcers
use reduced compression bandaging
under 0.5Severe arterial diseaseUrgent specialist referralArterial ulcers
no compression bandaging used

Predictor of atherosclerosis mortality[edit]

Studies in 2006 suggests that an abnormal ABPI may be an independent predictor of mortality, as it reflects the burden of atherosclerosis.[14][15]

See also[edit]

References[edit]

  1. ^ Al-Qaisi, M; Nott, DM, King, DH, Kaddoura, S (2009). "Ankle brachial pressure index (ABPI): An update for practitioners.". Vascular health and risk management 5: 833–41. PMC 2762432. PMID 19851521. 
  2. ^ a b Vowden P, Vowden K (March 2001). "Doppler assessment and ABPI: Interpretation in the management of leg ulceration". Worldwide Wounds.  - describes ABPI procedure, interpretation of results, and notes the somewhat arbitrary selection of "ABPI of 0.8 has become the accepted endpoint for high compression therapy, the trigger for referral for a vascular surgical opinion and the defining upper marker for an ulcer of mixed aetiology"
  3. ^ McDermott MM, Criqui MH, Liu K, Guralnik JM, Greenland P, Martin GJ, Pearce W (December 2000). "Lower ankle/brachial index, as calculated by averaging the dorsalis pedis and posterior tibial arterial pressures, and association with leg functioning in peripheral arterial disease". JJ Vasc Surg. 32 (6): 1164–71. doi:10.1067/mva.2000.108640. PMID 11107089. 
  4. ^ Allison MA, Hiatt WR, Hirsch AT, Coll JR, Criqui MH (April 2008). "A high ankle-brachial index is associated with increased cardiovascular disease morbidity and lower quality of life". J Am Coll Cardiol. 51 (13): 1292–8. doi:10.1016/j.jacc.2007.11.064. PMID 18371562. 
  5. ^ American Diabetes Association (December 2003). "Peripheral Arterial Disease in People with Diabetes". Diabetes Care 26 (12): 3333–3341. doi:10.2337/diacare.26.12.3333. PMID 14633825. 
  6. ^ Aboyans V, Ho E, Denenberg JO, Ho LA, Natarajan L, Criqui MH (November 2008). "The association between elevated ankle systolic pressures and peripheral occlusive arterial disease in diabetic and nondiabetic subjects". J Vasc Surg. 48 (5): 1197–203. doi:10.1016/j.jvs.2008.06.005. PMID 18692981. 
  7. ^ Novo S (March 2002). "Classification, epidemiology, risk factors, and natural history of peripheral arterial disease". Diabetes Obes Metab. 4: S1–6. doi:10.1046/j.1463-1326.2002.0040s20s1.x. PMID 12180352. 
  8. ^ Stein R, Hriljac I, Halperin JL, Gustavson SM, Teodorescu V, Olin JW (February 2006). "Limitation of the resting ankle-brachial index in symptomatic patients with peripheral arterial disease". J Vasc Med. 11 (1): 29–33. doi:10.1191/1358863x06vm663oa. PMID 16669410. 
  9. ^ Montgomery PS, Gardner AW, (June 1998). "The clinical utility of a six-minute walk test in peripheral arterial occlusive disease patients". J Am Geriatr Soc 46 (6): 706–11. PMID 9625185. 
  10. ^ Jeelani NU, Braithwaite BD, Tomlin C, MacSweeney ST (July 2000). "Variation of method for measurement of brachial artery pressure significantly affects ankle-brachial pressure index values". Eur J Vasc Endovasc Surg. 20 (1): 25–8. doi:10.1053/ejvs.2000.1141. PMID 10906293. 
  11. ^ Caruana MF, Bradbury AW, Adam DJ (May 2005). "The validity, reliability, reproducibility and extended utility of ankle to brachial pressure index in current vascular surgical practice". Eur J Vasc Endovasc Surg. 29 (5): 443–51. doi:10.1016/j.ejvs.2005.01.015. PMID 15966081. 
  12. ^ Kaiser V, Kester AD, Stoffers HE, Kitslaar PJ, Knottnerus JA (July 1999). "The influence of experience on the reproducibility of the ankle-brachial systolic pressure ratio in peripheral arterial occlusive disease". Eur J Vasc Endovasc Surg. 18 (1): 25–9. doi:10.1053/ejvs.1999.0843. PMID 10388635. 
  13. ^ Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR. (Sep 2001). "Peripheral arterial disease detection, awareness, and treatment in primary care.". JAMA 19 (286): 1317–24. doi:10.1001/jama.286.11.1317. PMID 11560536. 
  14. ^ Feringa HH, Bax JJ, van Waning VH, et al. (March 2006). "The long-term prognostic value of the resting and postexercise ankle-brachial index". Arch. Intern. Med. 166 (5): 529–35. doi:10.1001/archinte.166.5.529. PMID 16534039. 
  15. ^ Wild SH, Byrne CD, Smith FB, Lee AJ, Fowkes FG (March 2006). "Low ankle-brachial pressure index predicts increased risk of cardiovascular disease independent of the metabolic syndrome and conventional cardiovascular risk factors in the Edinburgh Artery Study". Diabetes Care 29 (3): 637–42. doi:10.2337/diacare.29.03.06.dc05-1637. PMID 16505519.