Abstract analytic number theory

From Wikipedia, the free encyclopedia - View original article

 
Jump to: navigation, search

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by John Knopfmacher in the early 1970s.

Arithmetic semigroups[edit]

The fundamental notion involved is that of an arithmetic semigroup, which is a commutative monoid G satisfying the following properties:

a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}
where the pi are distinct elements of P, the αi are positive integers, r may depend on a, and two factorisations are considered the same if they differ only by the order of the factors indicated. The elements of P are called the primes of G.

Additive number systems[edit]

"Additive number system" redirects here. For food additive numbering, see E number.

An additive number system is an arithmetic semigroup in which the underlying monoid G is free abelian. The norm function may be written additively.[1]

If the norm is integer-valued, we associate counting functions a(n) and p(n) with G where p counts the number of elements of P of norm n, and a counts the number of elements of G of norm n. We let A(x) and P(x) be the corresponding formal power series. We have the fundamental identity[2]

A(x) = \sum_n a(n) x^n = \prod_n (1-x^n)^{-p(n)} \

which formally encodes the unique expression of each element of G as a product of elements of P. The radius of convergence of G is the radius of convergence of the power series A(x).[3]

The fundamental identity has the alternative form[4]

A(x) = \exp\left({ \sum_{m \ge 1} \frac{P(x^m)}{m} }\right) \ .

Examples[edit]

Methods and techniques[edit]

The use of arithmetic functions and zeta functions is extensive. The idea is to extend the various arguments and techniques of arithmetic functions and zeta functions in classical analytic number theory to the context of an arbitrary arithmetic semigroup which may satisfy one or more additional axioms. Such a typical axiom is the following, usually called "Axiom A" in the literature:

For any arithmetic semigroup which satisfies Axiom A, we have the following abstract prime number theorem:[6]

\pi_G(x) \sim \frac{x^{\delta}}{\delta \log x} \mbox { as } x \rightarrow \infin

where πG(x) = total number of elements p in P of norm |p| ≤ x.

Arithmetical formation[edit]

The notion of arithmetical formation provides a generalisation of the ideal class group in algebraic number theory and allows for abstract asymptotic distribution results under constraints. In the case of number fields, for example, this is Chebotarev's density theorem. An arithmetical formation is an arithmetic semigroup G with an equivalence relation ≡ such that the quotient G/≡ is a finite abelian group A. This quotient is the class group of the formation and the equivalence classes are generalised arithmetic progressions or generalised ideal classes. If χ is a character of A then we can define a Dirichlet series

 \sum_{g \in G} \chi([g]) |g|^{-s}

which provides a notion of zeta function for arithmetical semigroup.[7]

See also[edit]

References[edit]

  1. ^ Burris (2001) p.20
  2. ^ Burris (2001) p.26
  3. ^ Burris (2001) p.31
  4. ^ Burris (2001) p.34
  5. ^ Knopfmacher (1990) p.75
  6. ^ Knopfmacher (1990) p.154
  7. ^ Knopfmacher (1990) pp.250–264