3,4-Dihydroxyphenylacetic acid

From Wikipedia, the free encyclopedia - View original article

3,4-Dihydroxyphenylacetic acid
Identifiers
CAS number102-32-9 YesY
PubChem547
ChemSpider532 YesY
DrugBankDB01702
MeSH3,4-Dihydroxyphenylacetic+Acid
ChEBICHEBI:41941 YesY
ChEMBLCHEMBL1284 YesY
Jmol-3D imagesImage 1
Properties
Molecular formulaC8H8O4
Molar mass168.15 g mol−1
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references
 
Jump to: navigation, search
3,4-Dihydroxyphenylacetic acid
Identifiers
CAS number102-32-9 YesY
PubChem547
ChemSpider532 YesY
DrugBankDB01702
MeSH3,4-Dihydroxyphenylacetic+Acid
ChEBICHEBI:41941 YesY
ChEMBLCHEMBL1284 YesY
Jmol-3D imagesImage 1
Properties
Molecular formulaC8H8O4
Molar mass168.15 g mol−1
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine.

Dopamine can be metabolized into one of three substances. One such substance is DOPAC. Another is 3-methoxytyramine (3-MT). Both of these substances are degraded to form homovanillic acid (HVA). Both degradations involve the enzymes monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT), albeit in reverse order: MAO catalyzes dopamine to DOPAC, and COMT catalyzes DOPAC to HVA; whereas COMT catalyzes dopamine to 3-MT and MAO catalyzes 3-MT to HVA. The third metabolic end-product of dopamine is norepinephrine (noradrenaline).

DOPAC can be oxidized by hydrogen peroxide, leading to the formation of toxic metabolites which destroy dopamine storage vesicles in the substantia nigra. This may contribute to the failure of levodopa treatment of Parkinson's disease. A MAO-B inhibitor such as selegiline or rasagiline can prevent this from happening.

Biodegradation of dopamine

It can also be found in the bark of Eucalyptus globulus.[1]

References[edit]

  1. ^ Santos, Sónia A. O.; Freire, Carmen S. R.; Domingues, M. Rosário M.; Silvestre, Armando J. D.; Neto, Carlos Pascoal (2011). "Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography–Mass Spectrometry". Journal of Agricultural and Food Chemistry 59 (17): 9386–93. doi:10.1021/jf201801q. PMID 21761864.